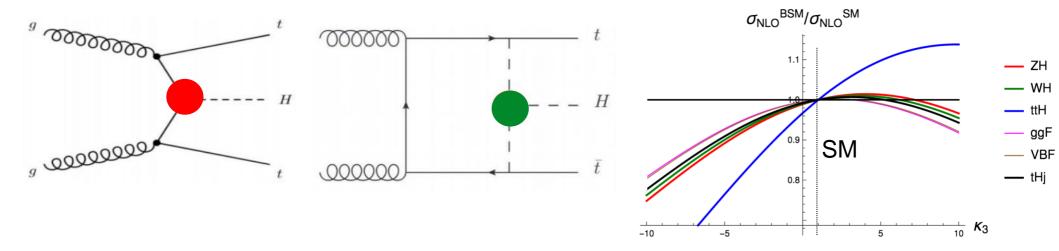
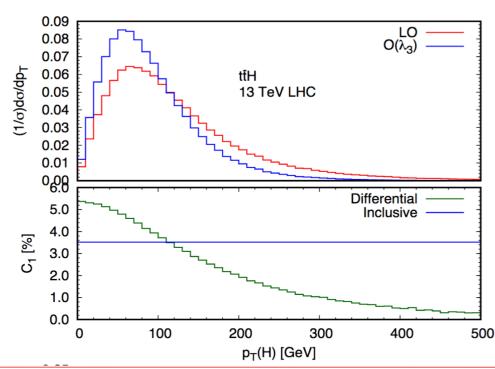


STXS for ttH

June 12th 2019

Link to last discussion within WG2_HiggsProperties

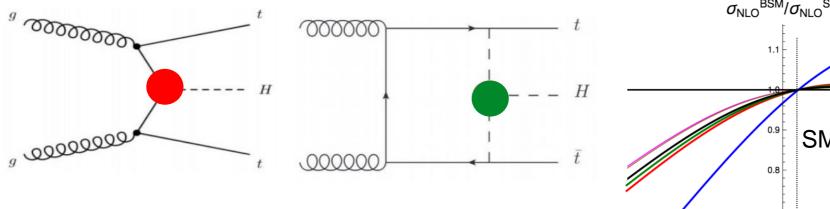

https://indico.cern.ch/event/825370/


12:00 → 12:05	Introduction	⊙ 5m
	Speakers: Frank Tackmann (Deutsches Elektronen-Synchrotron (DE)), Lorenzo Viliani (Universita e INFN, Firenze (IT)), Nicolas Berger (Centre National de la Recherche Scientifique (FR))	
12:05 → 12:15	Theory background	○ 10m
	Speaker: Frank Tackmann (Deutsches Elektronen-Synchrotron (DE))	
12:15 → 12:30	CMS Contribution	○ 15m
	Speaker: Julie Malcles (Université Paris-Saclay (FR))	
	LtH-STXS-06June19	
12:30 → 12:45	ATLAS Contribution	O 15m
	Speaker: Jelena Jovicevic (CERN)	
	Land the state of	
12:45 → 13:00	Discussion	③ 15m

Imagine ttH is measured to be different from SM...

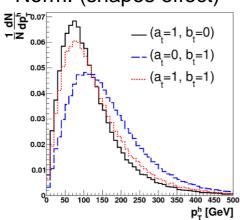
Who is the responsible?

Eur. Phys. J. C (2017) 77: 887


The power of differential measurements:


Variations in Higgs-self coupling (λ_3) will affect the shape of kinematic, e.g. low $p_T(H)$ region would be highly affected while it is not deformed in the tail...

Imagine ttH is measured to be different from SM...


Who is the responsible?

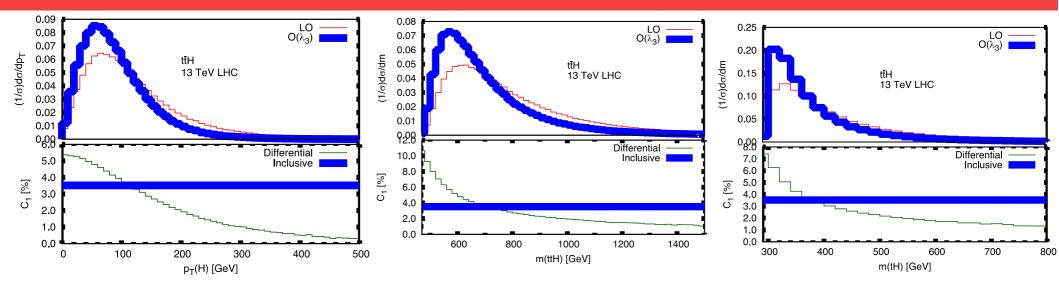
Eur. Phys. J. C (2017) 77: 887



Norm. (shapes effect)

Not norm. (rates effect)

The power of differential measurements:


Variations in Higgs-self coupling (λ_3) will affect the shape of kinematic, e.g. low $p_T(H)$ region would be highly affected while it is not deformed in the tail...

Also could be due to **CP-violating effects**...

: fiducial differential measurements

For STXS: observable and binning choice?

* Best variable to probe production @threshold?

 $p_T(H)$, m(ttH), H_T ...

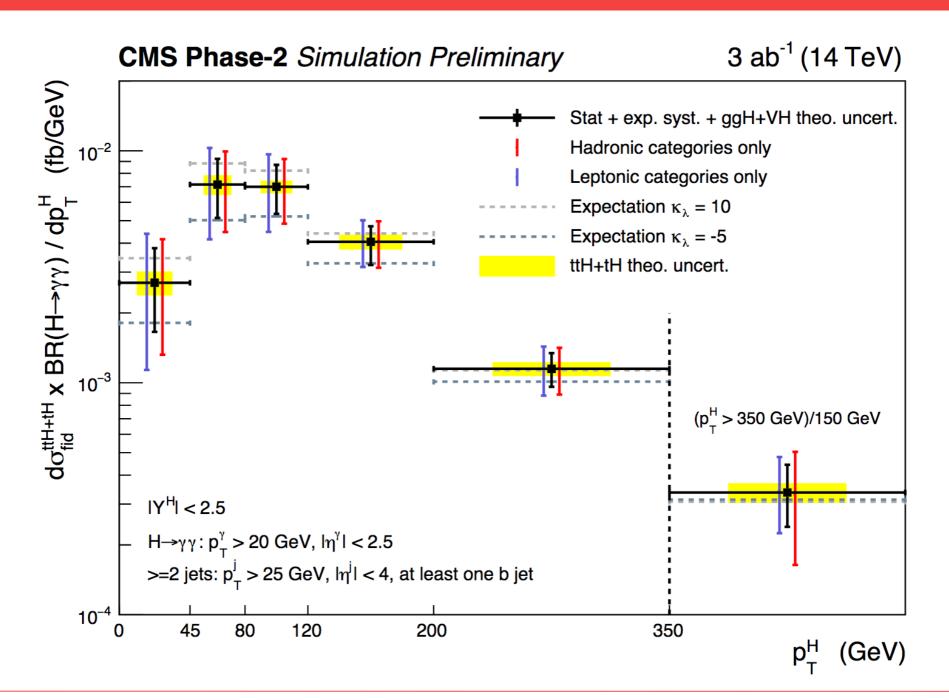
advantage of $p_T(H)$: no need to define truth-level top

→ To start, propose to test these options: 1) p_T (Higgs):

1.a) 2 bins, boundary at 150 GeV or 120 GeV (to align with ggH)

1.b) 3 bins, boundaries at 120, 200 GeV

(dashed 200 GeV to allow further split ~300, 350,400?)


- Also evaluate experimental acceptance and sensitivity in each of the channels (γγ, bb, and multileptons)
- * What happens with additional QCD radiation? Can we further split bins with 0/1 additional jets?

* What about tH?

BACK-UP

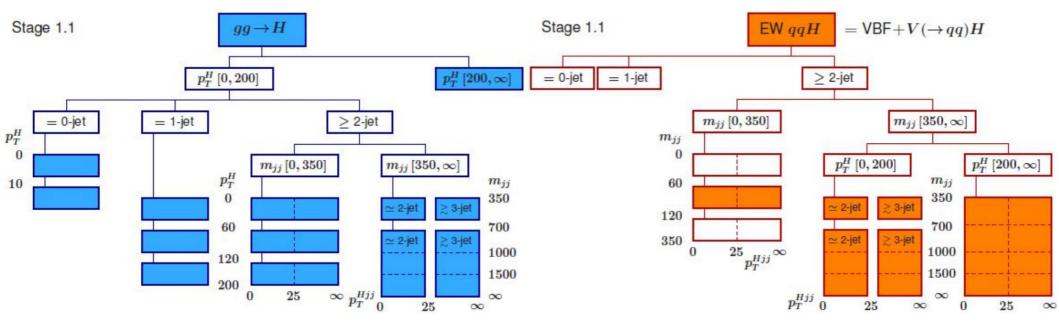
$ttH(\gamma\gamma)$ 140/fb

Category	$t\bar{t}H$ Signal	non- $t\bar{t}H$ Higgs	Continuum Background	Total (Expected)	Data
$t\bar{t}H$ "Lep" Category 1	7.9 ± 1.5	0.42 ± 0.12	4.6 ± 0.9	12.9 ± 1.8	15
$t\bar{t}H$ "Lep" Category 2	3.9 ± 0.6	0.43 ± 0.15	7.5 ± 1.2	11.8 ± 1.3	11
$t\bar{t}H$ "Lep" Category 3	1.45 ± 0.24	0.49 ± 0.19	7.5 ± 1.2	9.5 ± 1.2	6
$t\bar{t}H$ "Had" Category 1	6.9 ± 1.6	0.8 ± 0.5	4.5 ± 0.9	12.2 ± 1.9	15
$t\bar{t}H$ "Had" Category 2	5.6 ± 1.0	1.1 ± 0.8	16.5 ± 1.7	23.2 ± 2.3	31
$t\bar{t}H$ "Had" Category 3	7.7 ± 1.3	3.1 ± 2.2	56.0 ± 3.0	67 ± 4	82
$t\bar{t}H$ "Had" Category 4	4.9 ± 0.8	5 ± 4	101 ± 4	111 ± 6	105

I+jets

1: 000								
SR ₃ ^{≥6j}		$\mathrm{SR}_2^{\geq 6\mathrm{j}}$		SR ₁ ≥6j				
Prefit	Postfit	Prefit	Postfit	Prefit	Postfit			
85 ± 10	71 ± 52	81 ± 10	68 ± 50	62 ± 11	51 ± 38			
750 ± 370	586 ± 98	210 ± 210	96 ± 33	14 ± 10	12.1 ± 5.8			
880 ± 350	1330 ± 190	350 ± 100	473 ± 99	53 ± 33	44 ± 20			
2100 ± 420	2290 ± 170	1750 ± 370	1850 ± 130	1010 ± 240	1032 ± 59			
51.2 ± 7.4	50.8 ± 5.9	40.8 ± 5.7	40.3 ± 4.8	25.8 ± 3.7	25.3 ± 3.2			
303 ± 82	267 ± 63	155 ± 52	134 ± 46	75 ± 20	58 ± 17			
4140 ± 850	4590 ± 110	2550 ± 510	2657 ± 82	1220 ± 250	1223 ± 42			
4698		2641		1222				
	Prefit 85 ± 10 750 ± 370 880 ± 350 2100 ± 420 51.2 ± 7.4 303 ± 82 4140 ± 850	Prefit Postfit 85 ± 10 71 ± 52 750 ± 370 586 ± 98 880 ± 350 1330 ± 190 2100 ± 420 2290 ± 170 51.2 ± 7.4 50.8 ± 5.9 303 ± 82 267 ± 63 4140 ± 850 4590 ± 110	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c c }\hline SR_3^{\geq 6j} & SR_2^{\geq 6j} \\\hline Prefit & Postfit & Prefit & Postfit \\\hline 85 \pm 10 & 71 \pm 52 & 81 \pm 10 & 68 \pm 50 \\ 750 \pm 370 & 586 \pm 98 & 210 \pm 210 & 96 \pm 33 \\ 880 \pm 350 & 1330 \pm 190 & 350 \pm 100 & 473 \pm 99 \\ 2100 \pm 420 & 2290 \pm 170 & 1750 \pm 370 & 1850 \pm 130 \\ 51.2 \pm 7.4 & 50.8 \pm 5.9 & 40.8 \pm 5.7 & 40.3 \pm 4.8 \\ 303 \pm 82 & 267 \pm 63 & 155 \pm 52 & 134 \pm 46 \\\hline 4140 \pm 850 & 4590 \pm 110 & 2550 \pm 510 & 2657 \pm 82 \\\hline \end{array}$	$\begin{array}{ c c c c c c }\hline SR_3^{\geq 6j} & SR_2^{\geq 6j} & SR_2^{\geq 6j} \\\hline Prefit & Postfit & Prefit & Postfit & Prefit \\\hline 85 \pm 10 & 71 \pm 52 & 81 \pm 10 & 68 \pm 50 & 62 \pm 11 \\\hline 750 \pm 370 & 586 \pm 98 & 210 \pm 210 & 96 \pm 33 & 14 \pm 10 \\\hline 880 \pm 350 & 1330 \pm 190 & 350 \pm 100 & 473 \pm 99 & 53 \pm 33 \\\hline 2100 \pm 420 & 2290 \pm 170 & 1750 \pm 370 & 1850 \pm 130 & 1010 \pm 240 \\\hline 51.2 \pm 7.4 & 50.8 \pm 5.9 & 40.8 \pm 5.7 & 40.3 \pm 4.8 & 25.8 \pm 3.7 \\\hline 303 \pm 82 & 267 \pm 63 & 155 \pm 52 & 134 \pm 46 & 75 \pm 20 \\\hline 4140 \pm 850 & 4590 \pm 110 & 2550 \pm 510 & 2657 \pm 82 & 1220 \pm 250 \\\hline \end{array}$			

I+jets


	SR ₂ ^{5j}		SR ₁ ^{5j}		SR ^{boosted}	
Sample	Prefit	Postfit	Prefit	Postfit	Prefit	Postfit
$t\bar{t}H$	40.1 ± 5.1	34 ± 25	15.9 ± 2.1	13.3 ± 9.8	16.9 ± 1.9	14 ± 10
$t\bar{t} + ext{light}$	500 ± 210	393 ± 67	15 ± 33	12.5 ± 9.3	180 ± 120	112 ± 32
$t\bar{t} + \geq 1c$	436 ± 92	610 ± 100	30 ± 17	28 ± 14	168 ± 70	235 ± 39
$t\bar{t} + \geq 1b$	1230 ± 200	1450 ± 110	273 ± 53	335 ± 25	236 ± 89	229 ± 33
$t\bar{t} + V$	19.9 ± 2.9	19.7 ± 2.4	6.4 ± 1.3	6.4 ± 1.2	16.1 ± 2.9	16.6 ± 2.4
Non- $t\bar{t}$	269 ± 64	220 ± 52	54 ± 11	28.1 ± 8.4	104 ± 30	101 ± 26
Total	2440 ± 390	2724 ± 70	371 ± 68	423 ± 23	710 ± 200	708 ± 40
Data	ata 2798		426		740	

dilepton

	SR ₃ ^{≥4j}		SR ₂ ^{≥4j}		SR ₁ ≥4j	
Sample	Prefit	Postfit	Prefit	Postfit	Prefit	Postfit
tīH	21.9 ± 2.5	18 ± 13	29.1 ± 4.2	25 ± 18	15.6 ± 2.5	12.9 ± 9.5
$t\bar{t} + ext{light}$	83 ± 41	95 ± 30	250 ± 110	215 ± 43	6.4 ± 9.9	11.1 ± 9.3
$t\bar{t} + \geq 1c$	235 ± 61	313 ± 53	340 ± 210	427 ± 89	12.6 ± 9.4	25.8 ± 7.8
$t\bar{t} + \geq 1b$	819 ± 85	917 ± 71	590 ± 96	669 ± 59	247 ± 61	263 ± 20
$t\bar{t} + V$	15 ± 35	15 ± 34	22 ± 38	22 ± 39	7 ± 56	7 ± 57
Non- $t\bar{t}$	75 ± 17	78 ± 16	115 ± 36	121 ± 29	13.6 ± 3.8	14.6 ± 3.8
Total	1250 ± 140	1436 ± 55	1350 ± 320	1479 ± 66	302 ± 85	334 ± 59
Data	1467		1444		319	

STXS in Higgs production

- The STXS framework for Higgs measurement is used by ATLAS and CMS to report fine grained kinematic measurements for ggH, VBF and VH
- Recent update to V1.1: [1906.02754]

ttH or tH for possible CP-mixing angles

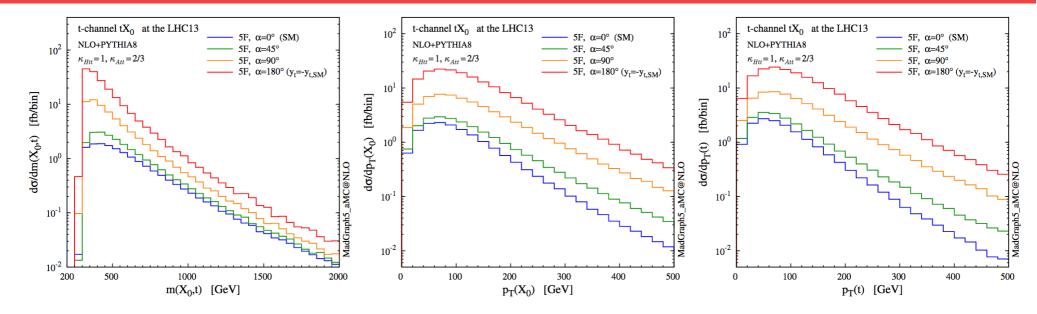
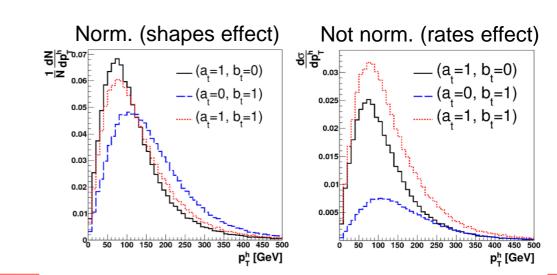
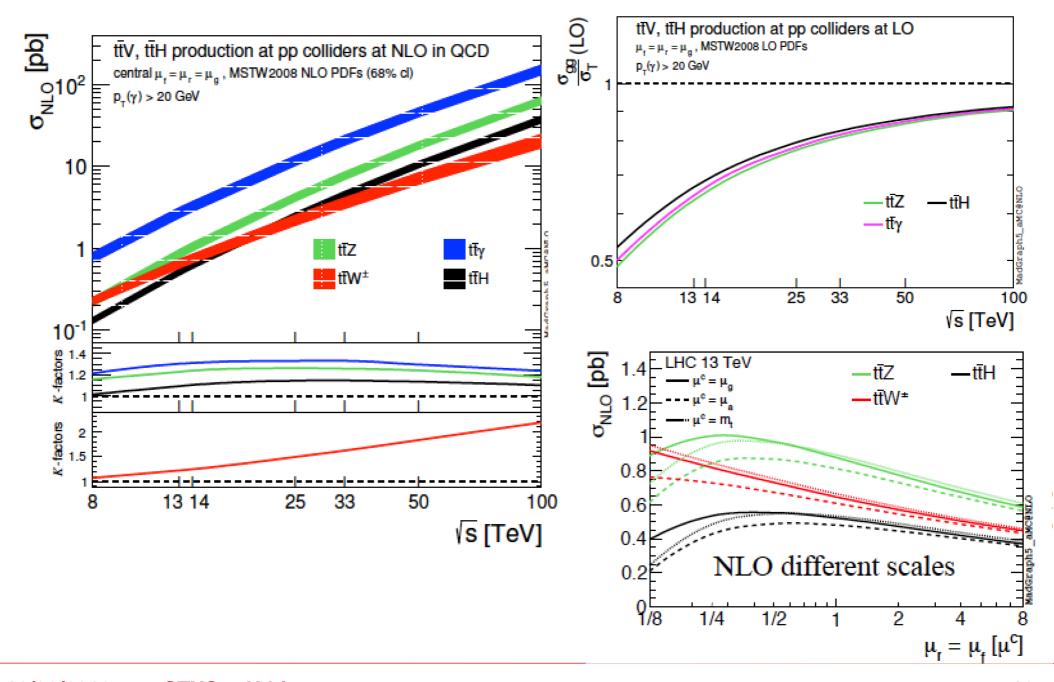




Fig. 13 Differential distributions for the Higgs boson and the top quark at NLO + PS accuracy in t-channel tH associated production at the 13-TeV LHC, with different values of the CP-mixing angles, where κ_{Htt} and κ_{Att} are set in Eq. (16) to reproduce the SM GF cross section for every value of α

pp->tt+H/Z/W/γ

