Mimicking Alternatives of Inflation with Interacting Spectator Fields

Julius Wons

University of New South Wales, Sydney

j.wons@unsw.edu.au

∃ ► < ∃ ►

1/11

Julius Wons (UNSW Sydney)

Motivation

[Wikipedia]

A D N A B N A B N A B N

- Prediction of minimal inflationary set up (Single Field Slow Roll): $\mathcal{P}_{\mathcal{R}} \sim k^{n_{\rm s}-1}$
- Assuming a power-law scale factor:

$$a(t) \sim t^p$$

Resulting spectral tilt:

$$n_s - 1 = 3 - \left|3 + \frac{2}{p-1}\right| \approx 0$$

 n_s vanishes for p ≫ 1 (Inflation) and p = 2/3 (Matter Contraction)

Features in The CMB

- Cosmic Variance limits accuracy at small ℓ .
- Dip at $\ell \approx 30$
- Hint for features in the CMB

[Planck 2018: Constrains on inflation (1807.06211)]

Heavy Fields / Primordial Standard Clock

- Heavy Fields (m ≫ H) during the primordial epoch oscillate around minimum.
- Oscillation will affect the evolution of the "inflaton".
- Studies on oscillatory features in CMB with $m^2\chi^2$ -potential [Primordial Standard Clock, X. Chen et al (1411.2349)].
- Assumes only gravitational interaction between field.
- Can distinguish Inflation and alternatives.

Introduce non-trivial interaction between fields:

$$\mathcal{L} = \frac{M_{\rm P}^2}{2} R - \frac{1}{2} \omega^2(\chi) g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi - V(\phi) - \frac{1}{2} f^2(\phi) g^{\mu\nu} \partial_\mu \chi \partial_\nu \chi - \frac{1}{2} m^2(\phi) \chi^2$$

- non-canonical kinetic term $\omega(\chi)$ for the "inflaton" ϕ
- non-canonical kinetic term $f(\chi)$ for heavy spectator field χ + non-constant mass term $m(\phi)$
- red terms appear generically in models with non-minimal coupling to gravity

[Guillem Domenech, Javier Rubio, JW (1811.08224)]

$$\chi \propto \sqrt{rac{a^{-3}}{m_{
m eff}f^2}} \sin\left(\int m_{
m eff} \, dt
ight) \qquad {
m with} \qquad m_{
m eff} = rac{m}{f}$$

$$\Delta \mathcal{P}_{\mathcal{R}} \propto \left(\frac{2k}{k_r}\right)^{\nu} \sin\left[C\left(\frac{2k}{k_r}\right)^{\frac{\gamma}{p}} + \theta_r\right]$$

$$\Delta \mathcal{P}_{\mathcal{R}} \propto \left(\frac{2k}{k_r}\right)^{
u} \sin\left[C\left(\frac{2k}{k_r}\right)^{\frac{\gamma}{p}} + \theta_r\right]$$

- k_r : scale of first oscillation
- Scaling of amplitude: $\nu = -\frac{3}{2} + \frac{1}{2}\frac{\gamma}{p} + \frac{\delta_m 2\delta_f}{1 + \delta_m \delta_f}$
- Scaling of frequency: $\gamma = \frac{1+p\,\delta_m p\,\delta_f}{1+\delta_m \delta_f}$
- Assume constant change in: $\delta_m = \frac{\dot{m}}{Hm}$ and $\delta_f = \frac{\dot{f}}{Hf}$

・ロト ・ 四ト ・ ヨト ・ ヨト …

Frequency:
$$\bar{p} = p/\gamma$$
, Amplitude: $\nu = -\frac{3}{2} + \frac{1}{2}\frac{1}{\bar{p}} + \frac{\delta_m - 2\delta_f}{1 + \delta_m - \delta_f}$

• Use two parameters δ_m and δ_f to fix two obsverables ν and \bar{p}

1) Choose $\delta_m = 2\delta_f$ to cancel additional contribution to ν

2) Choose δ_f such that $\bar{p} = p_{\rm inf}/\gamma = p_{\rm alt}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Resonance condition: $k = \frac{m}{f}a$

- Constant *m* and *f* = 1, Resonance directly probes *a*(*t*)
- Very distinct feature for inflation and alternatives

- *m* and *f* depend on time, Resonance probes combination of *m*, *f* and *a*
- Inflation can mimic signal from alternative scenarios

- Time dependent mass makes different signals indistinguishable at the level of the power spectrum.
- Power spectrum is not enough to tell inflation and alternatives apart.
- Need full information (frequency scaling + amplitude scaling) on bispectrum to break degeneracy.