Towards Simultaneous Global Fits of Particle Physics and Cosmology

Janina Renk
Oskar-Klein Centre, Stockholm University

on behalf of the GAMBIT collaboration
Inflation \rightarrow primordial power spectrum

* scales not realistic
Inflation \rightarrow primordial power spectrum

Big Bang Nucleosynthesis \rightarrow light element abundances

* scales not realistic
Inflation → primordial power spectrum

Big Bang Nucleosynthesis → light element abundances

Decoupling → CMB

* scales not realistic
Inflation \rightarrow primordial power spectrum

Big Bang Nucleosynthesis \rightarrow light element abundances

Decoupling \rightarrow CMB

Structure formation \rightarrow BAO scale

\rightarrow gravitational lensing

\rightarrow recession velocities of SNe Ia

* scales not realistic
Inflation → primordial power spectrum

Big Bang Nucleosynthesis → light element abundances

Decoupling → CMB

Structure formation
 → BAO scale
 → gravitational lensing
 → recession velocities of SNe Ia

Standard Model of Cosmology

- 68% Dark Energy
- 27% Dark Matter
- 5% "Ordinary" Matter

* scales not realistic
Inflation → primordial power spectrum

Big Bang Nucleosynthesis → light element abundances

Decoupling → CMB

Structure formation

→ BAO scale

→ gravitational lensing

→ recession velocities of SNe Ia

Dark Matter? Dark Energy?
“Ordinary” Matter?

* scales not realistic
Inflation \rightarrow primordial power spectrum

Big Bang Nucleosynthesis \rightarrow light element abundances

Decoupling \rightarrow CMB

Structure formation \rightarrow BAO scale
\rightarrow gravitational lensing
\rightarrow recession velocities of SNe Ia

Galaxies \rightarrow indirect detection

Dark Matter? Dark Energy? "Ordinary" Matter?

* scales not realistic
Inflation → primordial power spectrum

Big Bang Nucleosynthesis → light element abundances

Decoupling → CMB

Structure formation → BAO scale
 → gravitational lensing
 → recession velocities of SNe Ia

Galaxies → indirect detection

Dark Matter? \ Cybernetics \ “Ordinary” \ Matter?

Ground-based:
 → direct detection
 → particle collider
 → neutrino experiments

* scales not realistic
Inflation → primordial power spectrum

Big Bang Nucleosynthesis → light element abundances

Decoupling → CMB

Structure formation
 → BAO scale
 → gravitational lensing
 → recession velocities of SNe Ia

Galaxies
 → indirect detection

Dark Matter?

Dark Energy?

“Ordinary” Matter?

Ground-based:
 → direct detection
 → particle collider
 → neutrino experiments

* scales not realistic
HOW TO TACKLE THIS?

- Tool(s) to compute cosmological predictions/observables
- Tool(s) to compute cosmological likelihoods
- Tool(s) to compute DM relic density abundance & cross-sections
- Tool(s) to compute direct & indirect detection likelihoods
- Tool(s) to compute <prediction> / <likelihood> for ...
HOW TO TACKLE THIS?

- Tool(s) to compute cosmological predictions/observables
 .. for different BSM models

- Tool(s) to compute cosmological likelihoods
 .. for different BSM models

- Tool(s) to compute DM relic density abundance & cross-sections
 .. for different BSM models

- Tool(s) to compute direct & indirect detection likelihoods
 .. for different BSM models

- Tool(s) to compute <prediction> / <likelihood> for ...
 .. for different BSM models
=> HOW TO TACKLE THIS?

- Tool(s) to compute cosmological predictions/observables
 .. for different BSM models
- Tool(s) to compute cosmological likelihoods
 .. for different BSM models
- Tool(s) to compute DM relic density abundance & cross-sections
 .. for different BSM models
- Tool(s) to compute direct & indirect detection likelihoods
 .. for different BSM models
- Tool(s) to compute <prediction> / <likelihood> for ...
 .. for different BSM models

- Combine all of the above in a consistent way
- Keep track of all models & model-dependent assumptions
- Perform parameter scans with sensible sampling algorithms
=> HOW TO TACKLE THIS?

- Tool(s) to compute cosmological predictions/observables
 .. for different BSM models
- Tool(s) to compute cosmological likelihoods
 .. for different BSM models
- Tool(s) to compute DM relic density abundance & cross-sections
 .. for different BSM models
- Tool(s) to compute direct & indirect detection likelihoods
 .. for different BSM models
- Tool(s) to compute \(<\text{prediction}> / \langle \text{likelihood}\rangle\) for ...
 .. for different BSM models

- Combine all of the above in a consistent way
- Keep track of all models & model-dependent assumptions
- Perform parameter scans with sensible sampling algorithms

Does something like this exist already?

=> YES, GAMBIT!!
GAMBIT: The Global And Modular BSM Inference Tool

- Extensive model database – not just SUSY
- Extensive observable/data libraries
- Many statistical and scanning options (Bayesian & frequentist)
- Fast LHC likelihood calculator
- Massively parallel
- Fully open-source

Members of:
ATLAS, Belle-II, CLIC, CMS, CTA, Fermi-LAT, DARWIN, IceCube, LHCb, SHiP, XENON

Authors of:
DarkSUSY, DDCalc, Diver, FlexibleSUSY, gamlike, GM2Calc, IsaTols, nulike, PolyChord, Rivet, SoftSUSY, SuperISO, SUSY-AI, WIMPSim

Recent collaborators:
Peter Athron, Csaba Balázs, Ankit Beniwal, Sanjay Bloor, Torsten Bringmann, Andy Buckley, José Elie El Camargo-Molina, Marcin Chrząszcz, Jonathan Cornell, Matthias Danninger, Joakim Edsjö, Ben Farmer, Andrew Fowlie, Tomás E. Gonzalo, Will Handley, Sebastian Hoof, Selim Hotinli, Felix Kahlhoefer, Anders Kvellestad, Julia Harz, Paul Jackson, Farvah Mahmoudi, Greg Martinez, Are Raklev, Janina Renk, Chris Rogan, Roberto Ruiz de Austri, Pat Scott, Patrick Stöcker, Aaron Vincent, Christoph Weniger, Martin White, Yang Zhang

40+ participants in 11 experiments and 14 major theory codes
FACT SHEET

CosmoBit:
- Inflation: MultiModeCode (*Price*, 14)
- BBN: AlterBBN (*Arbey*, 18)
- Boltzmann solver: CLASS (*Blas*, 11)
 - + exo_class (*Stöcker*, 18) [+ hi_class (*Bellini*, 19)]
- Likelihoods: MontePython (*Brinckmann*, 18)

all links work! (except this one)
FACT SHEET

CosmoBit:
Inflation: MultiModeCode (Price+, ’14)
BBN: AlterBBN (Arbey, ’18)
Boltzman solver: CLASS (Blas+, ’11)
 + exo_class (Stöcker+, ’18) [+ hi_class (Bellini+, ’19)]
Likelihoods: MontePython (Brinckmann+, ’18)

DarkBit:
Relic abundance: WIMPs [DarkSUSY (Bringmann+, ’18) micrOMEGAS (Belanger+, ’18)],
 Axions (Hoof+, ’18), your_Lagrangian [GUM (Bloor+, ’20)]
Direct detection: Xenon, LUX, PICO, ...
 [DDCalc (Athron+, ’19)]
Indirect detection: Fermi-LAT data [gamLike (Bringmann+, ’17)]
FACT SHEET

CosmoBit:
- **Inflation:** MultiModeCode *(Price+, `14)*
- **BBN:** AlterBBN *(Arbey, `18)*
- **Boltzmann solver:** CLASS *(Blas+, `11)*
 + exo_class *(Stöcker+, `18)* [+ hi_class *(Bellini+, `19)]
- **Likelihoods:** MontePython *(Brinckmann+, `18)*

DarkBit:
- **Relic abundance:** WIMPs [DarkSUSY *(Bringmann+, `18)* micrOMEGAS *(Belanger+, `18)]*, Axions *(Hoof+, `18)*, your_Lagrangian [GUM *(Bloor+, `20)]
- **Direct detection:** Xenon, LUX, PICO, ...
- **Indirect detection:** Fermi-LAT data [gamLike *(Brinckmann+, `17)]

NeutrinoBit:
- **Oscillations:** NuFit *(Esteban+, `18)*
- **Direct detection:** DELPHI, ATLAS, CMS, NuTeV, ...
- **Indirect searches:** Lepton Flav Violation & Universality, Nu-less double β decay

SpecBit:
- **Phase Transitions:** Vevacious++ *(Camargo-Molina+, `13)*

ScannerBit:
- **Scanners:** GreAT *(Putze+, `14)*, MultiNest *(Feroz+, `13)*, Polychord *(Handley+, `15)*, T-Walk *(Christen+, `10)*, Diver + PostProcessor *(Martinez+, `17)*

02.09.2019

Janina Renk
EXAMPLE: ALPs

keV-scale Axion-Like Particles

→ Mass range \(1 \text{ keV} \lesssim m_a \lesssim 1 \text{ MeV} \)

→ Interactions with SM via effective coupling to photons

\[\mathcal{L} = \frac{g_{a\gamma\gamma}}{4} a F_{\mu\nu} \tilde{F}_{\mu\nu} \]
EXAMPLE: ALPs

keV-scale Axion-Like Particles

- Mass range: $1 \text{ keV} \lesssim m_a \lesssim 1 \text{ MeV}$

- Interactions with SM via effective coupling to photons

\[\mathcal{L} = \frac{g_{a\gamma\gamma}}{4} a F^{\mu\nu} \tilde{F}_{\mu\nu} \]

- Production via Primakoff process

\[f \gamma \rightarrow f a \]

- Abundance given by

\[Y_a = \frac{n_a}{s} \propto g_{a\gamma\gamma}^2 M_{\text{Pl}} (T_R - m_e) \]

- Decay to photons with lifetime

\[\tau \propto g_{a\gamma\gamma} m_a^{-3} \]
EXAMPLE: ALPs

keV-scale Axion-Like Particles

\(\rightarrow \) Mass range \(1 \text{ keV} \lesssim m_a \lesssim 1 \text{ MeV} \)

\(\rightarrow \) Interactions with SM via effective coupling to photons

\[\mathcal{L} = \frac{g_{a\gamma\gamma}}{4} a F^{\mu\nu} \tilde{F}_{\mu\nu} \]

\(\rightarrow \) Production via Primakoff process

\[f\gamma \rightarrow fa \]

\(\rightarrow \) Abundance given by

\[Y_a = \frac{n_a}{s} \propto g_{a\gamma\gamma}^2 M_{\text{Pl}} (T_R - m_e) \]

\(\rightarrow \) Decay to photons with lifetime

\[\tau \propto g_{a\gamma\gamma}^{-2} m_a^{-3} \]

\(\rightarrow \) ALP is subcomponent of DM

\(\rightarrow \) Agnostic about origin of \(n_a \)

\(\rightarrow \) Model parameters:

\[\left\{ m_a, g_{a\gamma\gamma}, \xi = \frac{n_a m_a}{\rho_{\text{cdm}}} \right\} \]
Inflation

BBN

CMB

Structure formation

Observable signatures

Heat up γ w.r.t. $\nu \rightarrow \Delta N_{\text{eff}}$

Spectral distortions

ALP decay time

$t < t_{\text{rec}}$

Galaxies & stars

02.09.2019

Janina Renk
Inflation

BBN

CMB

Structure formation

 Observable signatures

- Heat up γ w.r.t. $\nu \rightarrow \Delta N_{\text{eff}}$
- Spectral distortions
- Mod. CMB spectra through diff. ionisation history

ALP decay time

$t < t_{\text{rec}}$

$t_{\text{rec}} < t < t_U$

Galaxies & stars
Inflation

BBN

CMB

Structure formation

Galaxies & stars

Observables signatures

Heat up γ w.r.t. $\nu \rightarrow \Delta N_{\text{eff}}$

Spectral distortions

Mod. CMB spectra through diff. ionisation history

Observable signatures

ALP decay time

$t < t_{\text{rec}}$

$t_{\text{rec}} < t < t_{\text{U}}$

$t \sim t_{\text{U}}$

X- and γ-rays

Stellar evolution \rightarrow horizontal branch

ALP burst of type II SNe (SN1987A)
Observable signatures

- Heat up γ w.r.t. $\nu \rightarrow \Delta N_{\text{eff}}$
- Spectral distortions
- Mod. CMB spectra through diff. ionisation history

ALP decay time

$\rightarrow t < t_{\text{rec}}$

$\rightarrow t_{\text{rec}} < t < t_{U}$

$\rightarrow X$- and γ-rays

$\rightarrow t \sim t_{U}$

- Stellar evolution \rightarrow horizontal branch
- ALP burst of type II SNe (SN1987A)
Heat up w.r.t. ΔN_{eff}

Spectral distortions

Mod. CMB spectra through diff. ionisation history

\rightarrow X- and γ-rays

Stellar evolution \rightarrow horizontal branch

ALP burst of type II SNe (SN1987A)

ALP decay time

$t < t_{\text{rec}}$

$t_{\text{rec}} < t < t_U$

$t \sim t_U$

Credit to Patrick Stöcker (RWTH Aachen) for scans & plots

Janina Renk
Heat up γ w.r.t. $\nu \rightarrow \Delta N_{\text{eff}}$

Spectral distortions

Mod. CMB spectra through diff. ionisation history

- and γ-rays

Stellar evolution \rightarrow horizontal branch

ALP burst of type II SNe (SN1987A)

Observable signatures

ALP decay time

$t < t_{\text{rec}}$

$t_{\text{rec}} < t < t_{U}$

$t \sim t_{U}$

Credit to Patrick Stöcker (RWTH Aachen) for scans & plots

Janina Renk
Heat up w.r.t. $\nu \rightarrow \Delta N_{\text{eff}}$

Spectral distortions

Mod. CMB spectra through diff. ionisation history

X- and γ-rays

Stellar evolution \rightarrow horizontal branch

ALP burst of type II SNe (SN1987A)

\rightarrow ALP decay time

$t < t_{\text{rec}}$

$t_{\text{rec}} < t < t_{\text{U}}$

$t \sim t_{\text{U}}$

Credit to Patrick Stöcker (RWTH Aachen) for scans & plots!

Janina Renk
Mod. CMB spectra through diff. ionisation history

Stellar evolution → horizontal branch

ALP burst of type II SNe (SN1987A)

Heat up w.r.t. $\nu \rightarrow \Delta N_{\text{eff}}$

Spectral distortions*

Observable signatures

ALP decay time

$t < t_{\text{rec}}$

$t_{\text{rec}} < t < t_{\text{U}}$

$t \sim t_{\text{U}}$

X- and γ-rays

Stellar evolution → horizontal branch

ALP burst of type II SNe (SN1987A)

* not included in these results

Credit to Patrick Stöcker (RWTH Aachen) for scans & plots!

Janina Renk
 Observable signatures

- Heat up γ w.r.t. $\nu \rightarrow \Delta N_{\text{eff}}$
- Spectral distortions*
- Mod. CMB spectra through diff. ionisation history

ALP decay time

$t < t_{\text{rec}}$
$t_{\text{rec}} < t < t_U$
$t \sim t_U$

X- and γ-rays

Stellar evolution \rightarrow horizontal branch
ALP burst of type II SNe (SN1987A)

* not included in these results

Credit to Patrick Stöcker (RWTH Aachen) for scans & plots!

Janina Renk
Credit to Patrick Stöcker (RWTH Aachen) for scans & plots!

Janina Renk
More about GAMBiT ..

→ Recent results:
 - right-handed neutrinos \((1908.02302) \) → Tomas Gonzalo‘s talk
 - Axions & ALPs \((1810.07192) \)
 - EW-MSSM \((1809.02097) \) → Pat Scott‘s talk
 - Higgs portal DM \((1808.10465) \) → Ankit Beniwal‘s talk

→ Code publicly available: gambit.hepforge.org

→ Talk to one of us @TeVPA (Peter Athron, Csaba Balazs, Ankit Beniwal, Sanjay Bloor, Torsten Bringmann, Tomas Gonzalo, Andre Scaffidi, Pat Scott, Wei Su, Aaron Vincent, Martin White or me)
CONCLUSION

Simultaneous Global Fits of Particle Physics and Cosmology?

* scales not realistic
CONCLUSION

Simultaneous Global Fits of Particle Physics and Cosmology!

=> GAMBIT can help!

* scales not realistic
Backup Slides
Electromagnetic constraints on ALPs
When will CosmoBit be released?
When will CosmoBit be released?