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V + F - E = 𝜒
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Euler 
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Minkowski Functionals (MFs)

• morphological descriptors
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MFs from maps

• Numerically

area

circumference

𝜒

න𝜿𝒅𝒍 = 𝟏

න𝜿𝒅𝒍 = −𝟏

𝜒 = # of isolated white parts – # of isolated black parts
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Constrain cosmological parameters

• Likelihood

covariance matrix

Planck observation theory prediction

Prediction of MFs

• N-body simulations + ray-tracing

• Perturbative approach 

2nd moment 3rd moment 4th moment

Power spectrum Bispectrum Trispectrum
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Summary

• Minkowski functionals describe topological and morphological 
properties of maps 

• For non-Gaussian maps, MFs can add information that is missed by 
the power spectrum 

• MFs are promising tools for current and future CMB lensing 
observations
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Current Result

• Gaussian approximation

• Forecast constrain with Planck-like
fiducial data (best-fit, noise, mask)

• Treat low multipoles and high
multipoles separately

[Planck,2018]

L = 106



Covariance Matrix 


