Global fit of pseudo-Nambu-Goldstone (pNG) Dark Matter

Andre Scaffidi¹

In collaboration with C. Arina,² A. Beniwal,² C. Degrande² and J. Heisig² December 2, 2019

¹Department of Physics, University of Adelaide, Australia ²CP3, Université catholique de Louvain, Belgium

In collaboration with C. Arina, A. Beniwal, C. Degrande and J. Heisig

pseudo-Nambu-Goldstone (pNG) Dark Matter

Motivation

 Everyday, canonical WIMPs getting more and more constrained by direct detection.

In collaboration with C. Arina, A. Beniwal, C. Degrande and J. Heisig Global fit of pseudo-Nambu-Goldstone (pNG) Dark Matter

Motivation

- Everyday, canonical WIMPs getting more and more constrained by direct detection.
- ▶ Bypass? $\Rightarrow q^2$ suppressed σ_{SI} as $q \sim \mathcal{O}(\text{MeV})$ in DD.

Extend SM by adding new complex scalar S:

$$\mathscr{L} = \mathscr{L}_{\rm SM} + \mathscr{L}_{\rm S} + \mathscr{L}_{\rm Soft} ,$$

where

$$\mathscr{L}_{S} = \left(\partial_{\mu}S\right)^{*}\left(\partial^{\mu}S\right) + \frac{\mu_{S}^{2}}{2}|S|^{2} - \lambda_{\Phi S}\Phi^{\dagger}\Phi|S|^{2} - \frac{\lambda_{S}}{2}|S|^{4}$$
$$\mathscr{L}_{\text{soft}} = \frac{\mu_{S}^{\prime 2}}{4}\left(S^{2} + S^{*2}\right)$$

In collaboration with C. Arina, A. Beniwal, C. Degrande and J. Heisig

Global fit of pseudo-Nambu-Goldstone (pNG) Dark Matter

► After EWSB:

$$\Phi = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ v_h + \phi \end{pmatrix}, \quad S = \frac{v_s + s + i\chi}{\sqrt{2}}.$$

In collaboration with C. Arina, A. Beniwal, C. Degrande and J. Heisig Global fit of pseudo-Nambu-Goldstone (pNG) Dark Matter

After EWSB:

$$\Phi = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ v_h + \phi \end{pmatrix}, \quad S = \frac{v_s + s + i\chi}{\sqrt{2}}.$$

▶ Under dark *CP* symmetry: $\chi \rightarrow -\chi \implies$ (stable) pNG DM.

After EWSB:

$$\Phi = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ v_h + \phi \end{pmatrix}, \quad S = \frac{v_s + s + i\chi}{\sqrt{2}}.$$

▶ Under dark *CP* symmetry: $\chi \rightarrow -\chi \implies$ (stable) pNG DM.

b Diagonalising mass matrix yields two additional mass eigenstates (h, H):

$$m_{h,H}^2 = \frac{1}{2} \left[\lambda_{\Phi} v_h^2 + \lambda_S v_s^2 \mp \left(\frac{\lambda_S v_s^2 - \lambda_{\Phi} v_h^2}{\cos 2\theta} \right) \right]$$

where $\theta = \text{mixing angle}$. Identify m_h as SM Higgs.

After EWSB:

$$\Phi = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ v_h + \phi \end{pmatrix}, \quad S = \frac{v_s + s + i\chi}{\sqrt{2}}.$$

▶ Under dark *CP* symmetry: $\chi \rightarrow -\chi \implies$ (stable) pNG DM.

b Diagonalising mass matrix yields two additional mass eigenstates (h, H):

$$m_{h,H}^2 = \frac{1}{2} \left[\lambda_{\Phi} v_h^2 + \lambda_S v_s^2 \mp \left(\frac{\lambda_S v_s^2 - \lambda_{\Phi} v_h^2}{\cos 2\theta} \right) \right]$$

where $\theta = \text{mixing angle}$. Identify m_h as SM Higgs.

Tree level DD amplitude:

$$\mathcal{A}_{ ext{DD}}^{ ext{Tree}}\left(q^{2}
ight) \propto q^{2}\sin heta\cos heta\left(rac{1}{m_{h}^{2}}-rac{1}{m_{H}^{2}}
ight)$$

In collaboration with C. Arina, A. Beniwal, C. Degrande and J. Heisig

$m_{\chi},$	v_s ,	θ ,	m_H .

$$m_{\chi}, v_s, \theta, m_H.$$

Indirect detection relevant.

$$m_{\chi}, v_s, \theta, m_H.$$

- Indirect detection relevant.
- Also has contribution to invisible Higgs decay width and Higgs production,

$$m_{\chi}, v_s, \theta, m_H.$$

- Indirect detection relevant.
- Also has contribution to invisible Higgs decay width and Higgs production,
- Relic abundance ramifications.

$$m_{\chi}, v_s, \theta, m_H.$$

- Indirect detection relevant.
- Also has contribution to invisible Higgs decay width and Higgs production,
- Relic abundance ramifications.
- Global fit!

Statistical Analysis

 $\ln \mathcal{L}_{\text{total}}(\boldsymbol{\theta}) = \ln \mathcal{L}_{\Omega_{\chi}h^{2}}(\boldsymbol{\theta}) + \ln \mathcal{L}_{\Gamma_{h \to \chi \chi}}(\boldsymbol{\theta}) + \ln \mathcal{L}_{\text{EWPO}}(\boldsymbol{\theta}) + \ln \mathcal{L}_{\text{LEP}}(\boldsymbol{\theta}) + \ln \mathcal{L}_{\text{HS}}(\boldsymbol{\theta}),$

Туре	Constraints	Likelihood
Theoretical bounds	Bounded tree level potential, Perturvative unitarity ¹	_
Thermal relic abundance	$\Omega_{\rm DM}h^2=0.120\pm0.001^2$	Gaussian (+ 5% theory error)
Higgs invisible decay	$\mathcal{BR}(h o \chi \chi) \le 0.26^3$	one-sided Gaussian (+ 5% theory error)
EWPO	$\Delta S = 0.04 \pm 0.11$ $\Delta T = 0.09 \pm 0.14$ $\Delta U = -0.02 \pm 0.11^4$	3D Gaussian
Higgs searches at LEP	-	HiggsBounds v5.3.2beta
Higgs signal strengths	_	HiggsSignals v2.3.2beta

¹C.-Y. Chen et al., *PRD*, arXiv:1410.5488 ²Planck Collaboration, arXiv:1807.06209 ³ATLAS Collaboration, *PRL*, arXiv:1904.05105

⁴ J. Haller et al., *EPJC*, arXiv:1803.01853

In collaboration with C. Arina, A. Beniwal, C. Degrande and J. Heisig

Global fit of pseudo-Nambu-Goldstone (pNG) Dark Matter

Parameters/observables	Best-fit
m_{χ} (GeV)	118.614
v_h/v_s	4.922
θ (rad)	1.550
$m_H ({\sf GeV})$	125.300
$\Omega_{\chi}h^2$	0.120
$\langle \sigma v \rangle_0 (\mathrm{cm}^3 \mathrm{s}^{-1})$	3.511×10^{-31}

In collaboration with C. Arina, A. Beniwal, C. Degrande and J. Heisig Global fit of pseudo-Nambu-Goldstone (pNG) Dark Matter

Parameters/observables	Best-fit
m_χ (GeV)	118.614
v_h/v_s	4.922
θ (rad)	1.550
$m_H ({\sf GeV})$	125.300
$\Omega_{\chi}h^2$	0.120
$\langle \sigma v angle_0 ({ m cm}^3 { m s}^{-1})$	3.511×10^{-31}

HiggsBounds/HiggsSignals and EWPO:

- $\theta \lesssim 0.15$ rad for all m_H ;
- Arbitrary θ for $m_H \simeq m_h$.

pNG DM relic abundance:

- Annihilation cross-section resonantly enhanced for $m_{\chi} \simeq m_{h,H}/2$
- Small v_h/v_s for $m_\chi \simeq m_{h, H}/2$;
- Large v_h/v_s for $m_\chi \gtrsim 100 \,\text{GeV}$ (driven by m_H).

In collaboration with C. Arina, A. Beniwal, C. Degrande and J. Heisig

Left panel

- All PLR samples give $\Omega_{\chi}h^2 = 0.120$.
- 1 σ CL region splits into 2 islands: $m_{\chi} \simeq m_h/2$ and $m_{\chi} \gtrsim 100 \,\text{GeV}$.

Left panel

• All PLR samples give $\Omega_{\chi}h^2 = 0.120$.

• 1σ CL region splits into 2 islands: $m_{\chi} \simeq m_h/2$ and $m_{\chi} \gtrsim 100 \,\text{GeV}$.

Right panel

•
$$\langle \sigma v \rangle_0 \ll \langle \sigma v \rangle_{\rm FO}$$
 when $m_{\chi} \simeq m_h/2$.

 Search for DM annihilation in high DM density regions.

- Search for DM annihilation in high DM density regions.
- Fermi-LAT results publicly available as binned likelihood profiles for 45 dSphs.

[Fermi-LAT Collaboration, PRL, arXiv:1503.02641]

- Search for DM annihilation in high DM density regions.
- Fermi-LAT results publicly available as binned likelihood profiles for 45 dSphs.
- Post-process with *Fermi*-LAT likelihood (45 dSphs)

[Fermi-LAT Collaboration, PRL, arXiv:1503.02641]

- Search for DM annihilation in high DM density regions.
- Fermi-LAT results publicly available as binned likelihood profiles for 45 dSphs.
- Post-process with *Fermi*-LAT likelihood (45 dSphs)
- Compute total *Fermi*-LAT likelihood (available in MadDM v3.0).

[Fermi-LAT Collaboration, PRL, arXiv:1503.02641]

- Search for DM annihilation in high DM density regions.
- Fermi-LAT results publicly available as binned likelihood profiles for 45 dSphs.
- Post-process with *Fermi*-LAT likelihood (45 dSphs)
- Compute total *Fermi*-LAT likelihood (available in MadDM v3.0).
- Compute γ-ray energy spectra with MadDM and utilise Pythia v8.0 for showering/hadronisation.

[Fermi-LAT Collaboration, PRL, arXiv:1503.02641]

- Search for DM annihilation in high DM density regions.
- Fermi-LAT results publicly available as binned likelihood profiles for 45 dSphs.
- Post-process with *Fermi*-LAT likelihood (45 dSphs)
- Compute total *Fermi*-LAT likelihood (available in MadDM v3.0).
- Compute γ-ray energy spectra with MadDM and utilise Pythia v8.0 for showering/hadronisation.
- Include $2 \rightarrow 2$, $2 \rightarrow 3$ ($\chi\chi \rightarrow VV^*$ for off-shell $V^* = W/Z$), $2 \rightarrow 4$, $2 \rightarrow 5$ and $2 \rightarrow 6$ (e.g., $\chi\chi \rightarrow hH$, HH) processes.

[Fermi-LAT Collaboration, PRL, arXiv:1503.02641]

Out of 45 dSphs, 4 dSphs (Reticulum II, Tucana III, Tucana IV and Indus II) show slight excess (2σ local sig. each).

 Out of 45 dSphs, 4 dSphs (Reticulum II, Tucana III, Tucana IV and Indus II) show slight excess (2σ local sig. each).

Parameters/observables	Best-fit
m_χ (GeV)	62.485
v_h/v_s	7.962×10^{-4}
θ (rad)	0.939
$m_H ({\sf GeV})$	125.453
$\Omega_{\chi}h^2$	0.122
$\langle \sigma v angle_0 (\mathrm{cm}^3 \mathrm{s}^{-1})$	1.132×10^{-26}

 Out of 45 dSphs, 4 dSphs (Reticulum II, Tucana III, Tucana IV and Indus II) show slight excess (2σ local sig. each).

Parameters/observables	Best-fit	
m_χ (GeV)	62.485	
v_h/v_s	7.962×10^{-4}	
θ (rad)	0.939	
$m_H ({\sf GeV})$	125.453	
$\Omega_{\chi}h^2$	0.122	
$\langle \sigma v angle_0 ({ m cm}^3 { m s}^{-1})$	1.132×10^{-26}	

- Large DM masses disfavoured (hard annihilation spectra).
- Best-fit in h resonance region.
- $\chi\chi \to b\overline{b}$ channel dominant.

- ► Large range of allowed annihilation channels $\rightarrow m_{\chi} \gtrsim 400 \,\text{GeV}$ disfavoured.
- Interestingly, freeze out annihilation cross-section favoured by dSphs that exhibit slight excess.

 \blacktriangleright q^2 -suppressed pNG DM-nucleon cross-section at tree-level.

 \triangleright q^2 -suppressed pNG DM-nucleon cross-section at tree-level.

Leading-order contribution at one-loop order.

$$\sigma_{\chi N}^{1-\text{ loop }}=rac{\mu_{\chi N}^2}{\pi}rac{f_N^2m_N^2}{v_b^2m_\chi^2}\mathcal{F}^2$$

 \triangleright q^2 -suppressed pNG DM-nucleon cross-section at tree-level.

Leading-order contribution at one-loop order.

$$\sigma^{1-\text{ loop}}_{\chi N} = rac{\mu^2_{\chi N}}{\pi} rac{f_N^2 m_N^2}{v_h^2 m_\chi^2} \mathcal{F}^2$$

 \blacktriangleright \mathcal{F}^2 is...complicated. ee 1810.06105

▶ q^2 -suppressed pNG DM-nucleon cross-section at tree-level.

Leading-order contribution at one-loop order.

$$\sigma_{\chi N}^{1-\ \mathsf{loop}} = rac{\mu_{\chi N}^2}{\pi} rac{f_N^2 m_N^2}{v_h^2 m_\chi^2} \mathcal{F}^2$$

▶ *F*² is...complicated. ee 1810.06105

Post-process PLR samples by computing one loop cross-section.

Summary

Summary

Global fit

- Performed global fit of pNG DM.
- Observed Higgs signal strengths $\implies \theta \lesssim 0.15$ rad for all m_H ; arbitrary θ for $m_H \simeq m_h$.
- Correct DM abundance $\implies m_{\chi} \simeq m_{h, H}/2$ or $m_{\chi} \gtrsim 100 \,\text{GeV}$.

Post-process with Fermi-LAT likelihood (45 dSphs)

- ▶ 4/45 dSphs show excess at 2σ local significance each.
- $m_{\chi} \gtrsim 400 \,\text{GeV}$ are disfavoured (harder annihilation spectra).

Post-process with direct detection at one-loop level

- ▶ q^2 -suppressed tree-level cross-section → leading-order contribution at one-loop level.
- \blacktriangleright Computed one-loop cross-section for all samples \rightarrow all compatible with XENON1T.

Thank You!

Model files (FeynRules/FeynArts/UFO/Calchep): https://feynrules.irmp.ucl.ac.be/wiki/pNG

In collaboration with C. Arina, A. Beniwal, C. Degrande and J. Heisig Global fit of pseudo-Nambu-Goldstone (pNG) Dark Matter

Backup slides

Fig. 1: 2D PLR plots after post-processing our samples with *Fermi*-LAT likelihood (41 dSphs).

Fig. 2: Key DM observables after post-processing our samples with *Fermi*-LAT likelihood (41 dSphs).