

Status and Plan of PandaX Experiment

Ning Zhou Shanghai Jiao Tong University On behalf of the PandaX Collaboration

TeVPA2019, Sydney 2019-12-05

PandaX Collaboration

- Particle and Astrophysical Xenon Experiment
 - Formed in 2009

Universidad Zaragoza

China Jinping Underground Laboratory

- Deepest (6800 m.w.e): < 0.2 muons/m²/day
- Horizontal access: 9 km long tunnel

PandaX Dark Matter Experiments

- PandaX-II:
 - completed in 2019
- PandaX-4T
 - 4 ton liquid xenon in sensitive volume

PandaX-I: 120 kg DM experiment 2009-2014

PandaX-II: 580 kg DM experiment 2014-2019

PandaX-4T: multiton DM experiment 2019-

Dual-phase Xenon TPC

- Dual-phase xenon TPC
 - prompted S1 (scintillation) and delayed S2 (ionization)signals
- 3D position reconstruction
- Recoil energy measurement
- ER/NR discrimination

PandaX-II Detector

- Total exposure: ~140 ton-day
 - Full analysis work-in-progress, expected to release early in 2020

- 2019.06 "End-of-Run" completed
 - 1.16 ton of liquid xenon recuperated

Data-Driven Neutron Background Estimation

- Neutron background can be associated with high energy gammas (HEG signal)
 - Nuclear de-excitation (prompt), neutron capture (delayed)

- New neutron MC simulation
 - Take into account the gamma associated process
- Dark matter data
 - Estimated 11.5 ± 5.7 HEGs in Run10 DM data
 - SSNR/HEG ratio $\approx 1/24.6$, predicted by MC
 - Estimated neutron background: 0.47 ± 0.25 (vs old MCbased 0.83 \pm 0.42) arXiv: 1907.00545

AmBe Run	Data			MC
	# SSNR	# HEG	Ratio	Ratio
Run 9	3415	49159	1/14.4	1/14.7
Run 10	10390	151783	1/14.6	1/15.2

^{83m}Kr Injection Calibration

- ^{83m}Kr calibration source for PandaX experiment
 - With the newly built 20 MeV proton beam at IMP, China

20000

15000

10000

5000

S2

- Injection test at PandaX-II
 - 32.1 keV and 9.4 keV energy

 Position reconstruction algorithm was improved with ^{83m}Kr calibration data

300

400

500

Xenon Light Yield: Field Dependence

- Calibration data
 - 83mKr (9.4keV, 32.1 keV, 41.5 keV)
 - ^{131m}Xe (164 keV)
 - ^{129m}Xe (236 keV)
- Field variation:
 - 318 V/cm, 180 V/cm, 81 V/cm, 0V/cm
- Light yield variation as expected from Nest
- Reconstruction deformation with weak electric field

136 Xe $0\nu2\beta$ Search with PandaX-II

- 580kg ^{nat}Xe in PandaX-II detector
 51.6kg ¹³⁶Xe
- ¹³⁶Xe -> ¹³⁶Ba Q-value 2458 keV
- High energy reconstruction
 - PMT saturation
 - ²³²Th calibration
- Examined the high-energy region in the 88 ton-day of DM exposure data (8.1 ton-day of ¹³⁶Xe)

Constraints on ¹³⁶Xe 0v2β

- Obtained 90% CL lower Limits on half-life: 2.4x10²³ year
- Effective Majorana mass less than 1.3-3.5 eV
- First $0\nu 2\beta$ result from dual-phase xenon experiment

New Experiment Hall at CJPL-II

B2 hall in CJPL-II construction plan

- A general facility containing an ultrapure water shield of 4500 m³ to host large scale DM and $0\nu2\beta$ experiments

Short-Term Plan in B2 Hall

 Temporary infrastructure (fresh air, dual electricity supply, ultrapure water supply, Rn-free clean room), primarily funded by SJTU, to ensure a timely deployment of PandaX-4T

PandaX-4T Experiment

- 4-ton liquid xenon in sensitive volume (2.8 ton in fiducial volume)
- Onsite detector assembly started: Aug. 2019
- Expected sensitivity
 - **10x** more sensitive than PandaX-II

Table 4	Final background budget within the WIMP search window
---------	---

Sources	ER in mDRU	NR in mDRU	
Materials	0.0210 ± 0.0042	$(2.0 \pm 0.3) \times 10^{-4}$	
²²² Rn	0.0114 ± 0.0012	-	
⁸⁵ Kr	0.0053 ± 0.0011	-	
¹³⁶ Xe	0.0023 ± 0.0003	—	
Neutrino	0.0090 ± 0.0002	$(0.8 \pm 0.4) \times 10^{-4}$	
Sum	0.049 ± 0.005	$(2.8 \pm 0.5) \times 10^{-4}$	
2-year yield (evts)	1001.6 ± 102.2	5.7±1.0	
after selection (evts)	2.5±0.3	2.3±0.4	

Ultrapure Water Shield

- Low background SS detector platform: $13m(H)x10m(D) \sim 900 \text{ m}^3$
- Ultrapure water: 18 Mohm-cm, production rate 10 m³/h
 - ²³⁸U: 0.03ppt (ICPMS)
 - ²³²Th: 0.06ppt (ICPMS)
 - Rn requirements:
 - 0.2 Bq/m³ for DM
 - 2 mBq/m³ for 0vDBD (R&D)

Radon-Free, Clean, Assembly

- Class-10000 and class-1000 rooms constructed
- Radon-free air provided for class-1000 clean room
 - Radon level < 1 Bq/m³

Low background control (assay)

• Materials screening with variety of ultra-low radioactive detection techniques

ICPMS

Radon emanation measurement system

Kr assay system

Alpha detector (commissioning)

Radon emanation cold trap system

Low background control (surface)

• Rigorous cleaning protocols/procedures established

Low background control (noble gas)

- Challenging targets:
 - Kr/Xe <= 0.1 ppt</p>
 - 222 Rn = 1 µBq/kg (PandaX-II: ~8 µBq/kg)
- Distillation tower design goals:
 - Operate offline (initial Kr removal) and online
 - Two modes: Kr (10 kg/h, 99% Xe collection) and Rn (56.5 kg/h, need to beat Rn half-life)
- Distillation tower
 - Number of theoretical plates: 17
 - Tower Height: 8m
 - Tower Diameter:125mm

Cryogenics System

- Design goals
 - Gas storage system for 6-ton xenon
 - Cooling power: >=360 W
 - Total circulation flow rate: ~ 200slpm

21

TPC

- 4-ton liquid xenon in sensitive volume (2.8 ton in fiducial volume)
- Drift region: 1.2m(H)x1.2m(D)
- Designed field: drift (400 V/cm), extraction (6 kV/cm)
- 3-in PMTs, 169 top/199 bottom
- 1-in veto PMT 126

PMT: R11410-23

- 178 nm QE: 30% typical
- Gain: 5E6 under 1500 V
- Dark Rate: typical<1kHz (20 °C), typical 50 Hz (-100 °C), to suppress accidentals
- After-pulsing probability: < 5% between 400 ns to 5 μs
- Split HV divider chain to minimize discharge
- All PMTs measured with 3 cold cycles, acceptance ratio 92.3%!

Calibration System

- External source loops for gamma and AmBe neutron sources
- Dedicated SS pipe for DD neutron generator
 - DD generator under commissioning at Shanghai
- Internal source
 - Generic injection system for ^{83m}Kr and ²²⁰Rn under construction
 - ^{83m}Kr: ⁸³Rb source made at IMP and commissioned in PandaX-II
 - ²²⁰Rn:
 - Baseline: lantern mantles (²³²Th) commissioned in PandaX-II
 - ²²⁸Th surface source will be procured and tested

Electronics and DAQ

- Design goal
 - "0 threshold": triggerless
 - Maximum calibration event rate: 100 Hz, data rate: 300 MB/s
- Architecture
 - One digitizer board (16 channels) per readout link
 - 4 DAQ servers to collect raw data in parallel
 - Raw data sent to one server via 10Gbps switch
- DAQ
 - Event builder to save time-ordered data to SSD
 - Tested bandwidth limit > 1GB/s!
 - Webpage based DAQ software

Summary

- PandaX-4T experiment, x10 more sensitive than PandaX-II, is going forward rapidly
- Temporary infrastructure construction in B2 hall of CJPL-II recently completed
- Onsite detector assembly started: Aug. 2019
- Expected commissioning of PandaX-4T: end of 2020. The science operation will be in parallel with the CJPL-II facility construction
- Stay tuned!

Dark Matter Direct Detection Experiment

- Solar system in the dark matter halo
- Detection of incoming dark matter scattering off target atom
 - Nuclear recoil (NR) signature
 - Electronic recoil (ER) signature

DARK MATTER OVERVIEW: COLLIDER, DIRECT AND INDIRECT DETECTION SEARCHES -QUEIROZ, FARINALDO S. ARXIV:1605.08788