Towards the SM $N_{\rm eff}$

Jack Bennett. UNSW, Australia.

with: Y. Wong, G. Buldgen, M. Drewes.

Arxiv:1911.04504

Effective number of neutrinos

How is the total energy density is divided up?

•
$$\rho_R = \left[1 + \frac{7}{8} \left(\frac{4}{11} \right)^{4/3} N_{\text{eff}} \right] \rho_{\gamma}$$

• Current value $N_{\rm eff}=3.044$ (Gariazzo, de Salas, Pastor, 2019), but before, discrepant result

• $N_{\rm eff} = 3.052$ (Grohs et al. 2015)

Limits precision of cosmological observables

Outline

• Theory;

- Neutrino and e^{\pm} decoupling
- Finite temperature QED

- Our work:
 - Partition function
 - Solve ODE, add next order
 - Optical Theorem → decoupling temperature

Finite T QED

Calculate partition function using FT statistical field theory

$$\ln Z = \underbrace{\ln Z^0}_{\text{ideal gas}} + \underbrace{\ln Z^{(2)}}_{\mathcal{O}(e^2)} + \underbrace{\ln Z^{(3)}}_{\mathcal{O}(e^3)} + \cdots$$

$$\ln Z^{(2)} = -\frac{1}{2} \quad \text{ln } Z^{(3)} = \frac{1}{2} \left[\frac{1}{2} \sum_{n=1}^{\infty} -\frac{1}{3} \sum_{n=1}^{\infty} +\frac{1}{4} \sum_{n=1}^{\infty} + \cdots \right]$$

Ideal gas vs interactions Image

Ideal gas

Energy = kinetic energy + rest mass

Pressure = from kinetic energy

Y. Wong

+ EM interactions

Energy = modified kinetic energy + T-dependent
masses + interaction potential energy
Pressure = from modified kinetic energy + EM forces

Continuity equation

Need three equations:

Continuity
$$\frac{\mathrm{d}}{\mathrm{d}t}\rho = -3H(\rho+P)$$
 Pressure
$$P^{(n)} = T\frac{\partial \ln Z^{(n)}}{\partial V}$$

Pressure
$$P^{(n)} = T \frac{\partial \ln Z^{(n)}}{\partial V}$$

Energy density
$$\rho^{(n)} = -P^{(n)} + T \frac{\partial P^{(n)}}{\partial T}$$

Solution leads to $N_{\rm eff}$

Results part one: which method is correct?

Correct partition function gives $N_{\text{eff}} = 3.044$

Thermal part correct size

$$\ln Z^{(2)} = -\frac{1}{2}$$

Miss out the factor 1/2 gives $N_{\text{eff}} = 3.052$

Equivalent to changing mass in **dispersion relation**.

Thermal part **too big** $\ln Z^{(2)} = - \emptyset$

Higher Orders

• Then include $\mathcal{O}(e^3)$

$$\ln Z^{(3)} = \frac{1}{2} \left[\frac{1}{2} \left\{ -\frac{1}{3} \left(-\frac{1}{$$

- Find a change $\Delta N_{\rm eff}^{(3)} \simeq -0.001$
- This order is caused by charge screening (think Debye screening)
- What about **higher orders**? $\mathcal{O}(e^4)$ gives $\Delta N_{\rm eff} \simeq -4 \times 10^{-6}$. **Tiny!**

Results Part One: including $O(e^3)$

• Regardless of decoupling temperature T_d , $N_{\rm eff}$ decreases.

• $O(e^3)$ effect same size as **neutrino oscillations**

• : $\mathcal{O}(e^3)$ should be included in full calculation

Decoupling Temperature

- Use **Optical theorem** to calculate Im part of self energy.
 - Im $(\Pi) \sim |\mathcal{M}|^2$
- Why?
 - Thermal propagators
 - Future work
- Recover collision integrals from literature

$$T_d = 1.35 \text{ MeV}$$

Very close to lit.

$$T_d = 1.41 \, \text{MeV}$$

(Fornengo, Kim, Song. 1997)

Results Part two

• Grey line at $T_d = 1.35 \text{ MeV}$

 y-axis is part of N_{eff} not due to transport

 Becomes sensitive to how strong weak interactions are

Future and Conclusions

Conclusions

- Method giving $N_{\text{eff}} = 3.044$ right: remembers the $\frac{1}{2}$.
- $\mathcal{O}(e^3)$ not negligible $\delta N_{\rm eff} \simeq -0.001$
- Optical theorem can give literature results, useful going forward

Future (in progress)

- Need to include neutrino decoupling effects.
 - Preliminary results
- Add higher order effects to neutrino decoupling via optical theory

Thank you for listening!