Pulsar Wind Nebulae as seen in TeV γ -rays and their Galactic environments

Yves A. Gallant, Michelle Tsirou (with help from Z. Meliani, S. Klepser, S. Caroff, J. Hahn...)

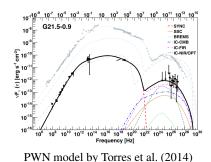
LUPM, CNRS/IN2P3, U. Montpellier, FRANCE

TeVPA 2019, Galactic Sources session Sydney, December 3, 2019

PWN luminosities in TeV γ -rays Galactic (far-infrared) interstellar radiation field Offsets of TeV PWNe from their pulsar Interstellar medium (ISM) density contrasts TeV PWNe and Gal. environments TeVPA, 3/12/2019 Yves Gallant et al.

Introduction PWN TeV luminosities Galactic (FIR) ISRF TeV PWN offsets ISM contrasts Summary

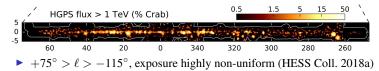
◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ◆ □ ● のへで


Pulsar Wind Nebulae and Supernova Remnants

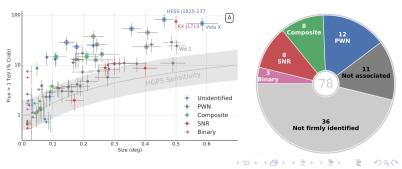
- ▶ a Pulsar Wind Nebula (PWN) is a bubble of accelerated e[±] powered by a pulsar's relativistic wind
- when young, often surrounded by the blast wave of the birth supernova, a shell-type Supernova Remnant (SNR)
- ► SNR shell + PWN = composite SNR, e.g. G 21.5–0.9 :

X-ray (Chandra) image

radio to > X-rays : synchrotron emission
gamma-rays : Inverse Compton emission


TeV PWNe and Gal. environments TeVPA, 3/12/2019 Yves Gallant et al.

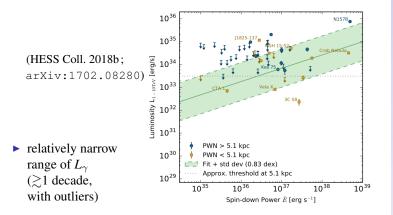
Introduction


PWN TeV luminosities Galactic (FIR) ISRF FeV PWN offsets SM contrasts Summary

・ロト・西ト・西ト・西ト・日・

HESS Galactic Plane Survey (HGPS)

- ▶ 78 sources in HGPS catalog, of which 40% identified
- identifications based on position, morphology and/or variability
- 90% of identifications are either PWNe, shell or composite SNRs
- 14 identified as PWNe of known pulsars, +5 outside HGPS



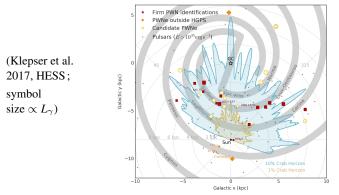
Gal. environments TeVPA, 3/12/2019 Yves Gallant et al. Introduction

TeV PWNe and

TeV γ -ray luminosity distribution of PWNe

► PWN TeV luminosities $L_{\gamma} = 4\pi D^2 F_{1-10 \text{ TeV}}$, vs. (current) pulsar spin-down energy loss \dot{E}

- weak correlation with \dot{E} , unlike L_X (Grenier 2009, Mattana+ 2009)
- ▶ add HGPS upper limits \Rightarrow significant faintening as \dot{E} decreases

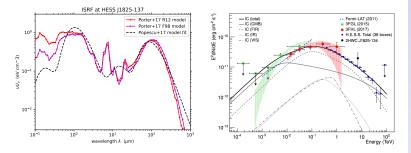

TeV PWNe and Gal. environments TeVPA, 3/12/2019 Yves Gallant et al.

PWN TeV luminosities Galactic (FIR) ISRF TeV PWN offsets ISM contrasts Summary

・ロト・日本・モート ヨー うらぐ

Galactic distribution of TeV PWNe

▶ PWNe trace recent massive star formation (spiral arms)

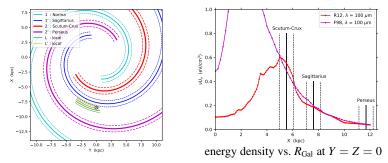


TeV PWNe and Gal. environments TeVPA, 3/12/2019 Yves Gallant et al.

- ► HGPS detectability quite good to Scutum-Crux (Centaurus) arm
- deficit of TeV-emitting PWNe in Sagittarius-Carina arm?
- ▶ PWNe in outer Galaxy (Vela X, 3C 58...) have low luminosities
- consequence of PWN parameters or of Galactic environment?

Galactic photon distribution and IC emission

- ▶ e.g. HESS J1825–137 in Scutum-Crux arm (talk by A. Mitchell)
- self-consistent models of Galactic (interstellar) radiation field (ISRF) by Porter et al. (2017) and Popescu et al. (2017) yield very similar results at HESS J1825–137 position (left panel)


- inverse Compton γ-ray emission model (HESS Coll. 2019) shows that far-infrared (FIR) is dominant target photon component
- stellar photon contribution suppressed by Klein-Nishina effects at TeV energies (UV component even more so)

・ロト・日本・日本・日本・日本・日本

TeV PWNe and Gal. environments TeVPA, 3/12/2019 Yves Gallant et al.

Spiral arms and Galactic photon density

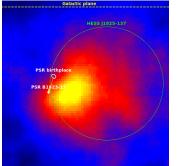
- Porter et al.'s R12 includes spiral arm model of Robitaille et al. (2012)
- 4 arms, but 2 dominant : 2 and 2', i.e. Scutum-Crux and Perseus which have enhanced stellar emissivity (young, newly formed stars)

TeV PWNe and Gal. environments TeVPA, 3/12/2019 Yves Gallant et al.

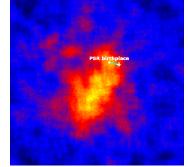
- Porter et al.'s calculations show mild arm-interarm contrast
- ▶ but large decrease in FIR density (factor \gtrsim 4) between $R \approx 5$ kpc (Scutum-Crux) and $R \gtrsim 8.5$ kpc (outer Galaxy)
- a sufficiently large and deep TeV PWN sample (as obtained by CTA) could probe FIR photon density throughout the Galaxy?

TeV PWN offsets vs. age

older TeV PWNe have large offsets from their pulsar


► cannot be explained solely by typical pulsar proper motions (observed distribution implies v_⊥ < 500 km/s for most)</p> TeV PWNe and Gal. environments TeVPA, 3/12/2019 Yves Gallant et al. Introduction PWN TeV Juminositie Galactic (FIR) ISRF TeV PWN offsets ISM contrasts Summary

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで


Pulsar proper motions don't explain the offsets

- ► 8 significantly offset TeV PWNe in population study
- ► from these, 2 pulsars have **measured** proper motions :

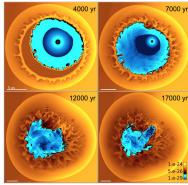
HESS J1825-137

Vela X

TeV PWNe and Gal. environments TeVPA, 3/12/2019 Yves Gallant et al.

Introduction PWN TeV luminositie Galactic (FIR) ISRF **TeV PWN offsets** ISM contrasts Summary

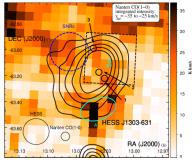

HGPS (public) significance maps


- velocity not only too small, but not in the right direction !
- alternative/complementary effect of asymmetric environment?
- no systematic trend relative to Galactic plane...

Offsets from asymmetric medium around SNR

► proposed to explain offset of Vela X (Blondin et al. 2001) G327.1–1.1

simulations \rightarrow (Temim et al. 2015) multiwavelength image (Acero et al. 2011) \downarrow



TeV PWNe and Gal. environments TeVPA, 3/12/2019 Yves Gallant et al.

- Temim et al. simulations have pulsar moving 400 km/s toward top (N), higher density to the right (W)
- ► asymmetric reverse shock interaction "crushes", displaces PWN
- ▶ what evidence supports asymmetric medium surrounding SNR?
- consistency with SNR shell and PWN geometry; but only 2–3 composites with TeV offsets (G327.1–1.1, Vela X, maybe MSH 15–52)

Issues and prospects on TeV PWN offsets

- ► SNR no longer visible around older offset PWNe...
- ▶ MWL (CO, HI, ...) search for clouds, opposite to the offset

HESS J1303–631 (Voisin et al. 2019)

velocity range : Scutum-Crux arm, $D \approx 6.6 \text{ kpc}$ TeV PWNe and Gal. environments TeVPA, 3/12/2019 Yves Gallant et al.

Introduction PWN TeV luminosities Galactic (FIR) ISRF TeV PWN offsets ISM contrasts Summary

- TeV PWN offset away from CO clouds nearest to pulsar
- but medium clumpy, other clouds : not a simple gradient

Prospects

- (2D) relativistic MHD simulations in progress with Z. Meliani, (AMR-VAC shock-capturing simulation code)
- address question for population : how to reproduce large offsets

Summary

H.E.S.S. Galactic Plane Survey

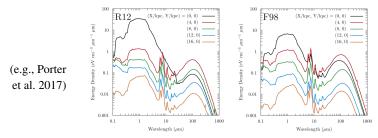
- ► 78 sources, 40% identified (most as PWNe or SNRs)
- $\triangleright \gtrsim 30\%$ of detected sources are PWNe or candidates

PWN TeV luminosities

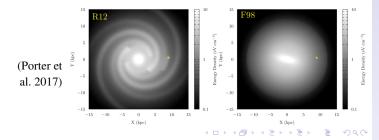
- weak trend of decreasing TeV luminosity with pulsar \dot{E}
- higher luminosities in inner Galaxy : FIR main IC target
- modelled FIR photon density contrast could explain trend
- deeper PWN sample (with CTA) could sample FIR in Galaxy ?

TeV PWN offsets

- older TeV PWNe have large offsets from their pulsar
- larger than can be explained by pulsar proper motion alone
- density inhomogeneities around SNR can also contribute
- limited MWL evidence for required density contrasts
- relativistic MHD simulations in progress

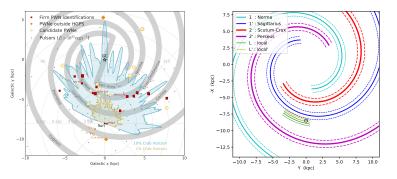

TeV PWNe and Gal. environments TeVPA, 3/12/2019 Yves Gallant et al.

TeV PWNe and Gal. environments TeVPA, 3/12/2019 Yves Gallant et al.


Introduction PWN TeV luminositier Galactic (FIR) ISRF TeV PWN offsets ISM contrasts Summary

Supplementary slides

Radiative transfer models of the Galaxy


- self-consistent model : stellar radiation absorbed by dust, which re-emits in FIR according to its equilibrium temperature
- stellar emissivity and dust spatial distribution prescribed

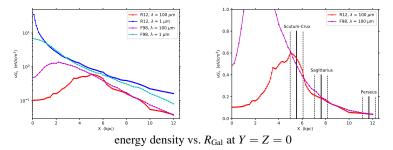
TeV PWNe and Gal. environments TeVPA, 3/12/2019 Yves Gallant et al.

Spiral arm structure of the Galaxy

- Porter et al.'s R12 model includes the Galactic spiral arm model of Robitaille et al. (2012)
- ► 4 arms, but 2 dominant : 2 and 2', i.e. Scutum-Crux and Perseus which have enhanced stellar emissivity (young, newly formed stars)

also enhanced FIR density could explain more luminous PWNe

▶ in Porter et al.'s R12 model, dust is in an axisymmetric disk...


TeV PWNe and Gal. environments TeVPA, 3/12/2019 Yves Gallant et al.

Introduction PWN TeV luminositie Galactic (FIR) ISRF TeV PWN offsets ISM contrasts Summary

ロ > < 回 > < 三 > < 三 > < 回 > < 回 > < 回 >

Galactic photon density distribution

- > Porter et al.'s calculations show low arm-interarm contrast
- ▶ but large decrease in FIR density (factor \gtrsim 4) between $R \approx 5$ kpc (Scutum-Crux) and $R \gtrsim 8.5$ kpc (outer Galaxy)
- enough to explain PWN luminosity contrast? To be continued...

- ► large discrepancy between models for FIR at R ≤ 4 kpc (and in central bulge for stellar photons)
- a sufficiently large and deep TeV PWN sample (as should be obtained by CTA) would likely help resolve the FIR discrepancy

TeV PWNe and Gal. environments TeVPA, 3/12/2019 Yves Gallant et al. troduction WN TeV luminositie

Summary