STACEX: RPC-based detector for a multi-messenger observatory in the Southern Hemisphere

G. Di Sciascio
INFN - Roma Tor Vergata
disciascio@roma2.infn.it
Beyond HAWC/LHAASO

In the next decade CTA-North and LHAASO are expected to be the most sensitive instruments to study γ-ray astronomy in the Northern Hemisphere from ≈20 GeV up to PeV.

Southern Hemisphere

• An all-sky detector in the Southern Hemisphere should be a high priority to face a broad range of topics and to complement CTA-South.

Science case for survey instruments is clear

• Galactic/Extragalactic unbiased survey: detection of unexpected sources.
• Discovering rare transient events requires full sky coverage and very low energy threshold (100 GeV range): transient factory
• GRB finder for LIGO/VIRGO
• AGN flares & GRBs as distant probes of high energy physics (e.g. Lorentz invariance and axions)
• Survey of the Inner Galaxy and Galactic Center → quest for PeVatrons
• TeV Source finder for CTA South
The **Southern Wide field-of-view Gamma-ray Observatory** is a collaboration aimed to support the proposal of a new survey instrument in the South.

The shared concept for the future observatory is, currently, as follows:

- A gamma-ray observatory based on ground-level particle detection, with close to 100% duty cycle and order steradian field of view.
- Located in South America at a latitude between 10 and 30 degrees south.
- At an altitude of 4.4 km or higher.
- Covering an energy range from 100s of GeV to 100s of TeV.
- Based primarily on water Cherenkov detector units but final layout still under study.
- With a high fill-factor core detector with area considerably larger than HAWC and significantly better sensitivity, and a low density outer array.

The first version of the science case is on the ArXiv, *arXiv:1902.08429*

https://www.swgo.org

Next talk by Samridha Kunwar
The Ideal Observatory for PeVatrons

- Search for sources of cosmic rays close to PeV energies: proton cut-off at ≈1 PeV imply gamma cut-off at ≈30 TeV ➔ High sensitivity at about 30-40 TeV
- Test spectral break and cutoffs at several TeV ➔ Good energy resolution at several TeVs
- Search for different and possibly unexpected classes of sources ➔ Unbiased survey
- Resolve sources which might be hidden in the tails of bright sources and compare and correlate with gas surveys ➔ Good angular resolution at several TeV
Expected knee in the diffuse γ-ray flux

Is the knee a source property, in which case we should see a corresponding spectral feature in the gamma-ray spectra of CR sources, or the result of propagation, so we should observe a knee that is potentially dependent on location, because the propagation properties depend on position in the Galaxy?

Observing a location dependence of the knee energy (or of the spectral index $!$) would provide important clues on the nature of the knee.

Grey band: expected γ-ray flux in the region $|\text{lat}|<5^\circ$, $\text{long}=25^\circ-100^\circ$

Extrapolation of the Fermi spectrum $E^{-2.65\pm0.05}$ with a steepening due to CR knee

$E_\gamma \sim E_{\text{CR}}/10$

1 year LHAASO 5 sigma sensitivity (approximate)

Unabsorbed flux

$S_{\text{ext}} = S_{\text{point}} \cdot \frac{\theta_{PSF}}{\theta_{\text{ext}}}$

Detectors with a ‘poor’ angular resolution are favoured in the extended source studies.
Cosmic Rays

- **Origin of the knee**: data conflicting ➔ still an open problem!
- Galactic / x-galactic energy transition
- **Anisotropy** vs particle rigidity

The proton knee is connected to the maximum energy of accelerated particles in CR sources!

Elemental composition!

Muon tagging?

At extreme altitude the sensitivity of the N_e/N_μ technique in selecting primary masses is reduced ➔ new observables ➔ suitable detector/readout!
Scientific requirements

A future Wide FoV Observatory to be useful (to CTA) needs:

- **Low energy threshold** (≈ 100 GeV) to detect extragalactic transients (AGN, GRBs).
- **Angular resolution** <1° at the threshold for survey of Inner Galaxy (source confusion).
- **<10% Crab sensitivity below TeV** to have high exposure for flaring activity.
- Good energy resolution above 10 TeV to detect spectral cut-offs
- Background discrimination capability at level of 10^{-5} (!!!) in the 100 TeV range to observe the knee in the energy spectrum of the γ diffuse emission in different regions of the GP.
- Capability to select different primary masses across the knee to investigate the origin of the knee (proton knee) and for anisotropy observations vs CR particle rigidity !

★ Is this possible ?

Physical limits mainly due to the detection technique !
Milagro vs ARGO-YBJ

2 different approaches in the last 2 decades for ground-based survey instruments

Milagro
Water Cherenkov Technology

- Operated from 2000 to 2008
- 2600 m above sea level
- Angular resolution \(\approx 0.5^\circ \)
- 1700 Hz trigger rate
- Median Energy at the threshold: \(\approx 2 \text{ TeV} \)
- Energy range: 2 - 40 TeV
- Poor background rejection (with outrigger)
- Conversion of secondary photons in water

ARGO-YBJ
Resistive Plate Chamber Technology

- Operated from 2007 to 2012 (final configuration)
- 4300 m above sea level
- Angular resolution \(\approx 0.5^\circ \) at 1 TeV
- 3500 Hz trigger rate
- High granularity of the readout
- Median Energy at the threshold: \(\approx 340 \text{ GeV} \)
- Energy Range: 340 GeV - 10 PeV
- No background rejection (no outrigger)
- No conversion of secondary photons (no lead)

Widely used technology in cosmic ray physics

Widely used technology in particle physics
Milagro vs ARGO-YBJ

Milagro

Water Cherenkov Technology

Central 80 m x 60 m x 8 m water reservoir, containing two layers of PMTs
- 450 PMTs at 1.4 m below the surface (top layer)
- 273 PMTs at 6 m below the surface (bottom layer)

Outrigger Array, consisting of 175 tanks filled with water and containing one PMT, distributed on an area of 200 m x 200 m around the central water reservoir.

ARGO-YBJ

Resistive Plate Chamber Technology

Central Carpet: 130 Clusters 1560 RPCs 124800 Strips

Time resolution ~1-2 ns (pad)
Space resolution = strip

Gas Mixture: Ar/ Iso/TFE = 15/10/75
HV = 7200 V

Single layer of Resistive Plate Chambers (RPCs) with a full coverage (92% active surface) of a large area (5600 m²) + sampling guard ring (6700 m² in total)

Space pixels: 146,880 strips (7x62 cm²)
Time pixels: 18,360 pads (56x62 cm²)

2 read-outs:

\[\rho_{\text{max-strip}} \approx 20 \, \text{particles/m}^2 \]

\[\rho_{\text{max-analog}} \approx 10^4 \, \text{particles/m}^2 \]

HAWC and **LHAASO**

MATHUSLA proposal, CR and hadronic physics at CERN (RPC carpets above CMS/ATLAS)
STACEX: γ-ray astronomy in the South

Southern sub-TeV Astrophysics and Cosmic rays EXperiment

STACEX proposal combines in a hybrid detector both approaches so far used in survey instruments

- Water Cherenkov technique (LHAASO-style)
- RPC technique (ARGO-style)

Two experimental techniques operated for many years at high altitude

Benefit of RPCs:
- Full coverage and high granularity of the read-out (*very low energy threshold*)
- **Good energy resolution**, in particular above 10 TeV (10% at 50 TeV)
- **Wide energy range** (100 GeV \rightarrow 10 PeV)
- **Elemental composition** up to \approx10 PeV (with charge readout)

Benefit of Water Cherenkov:
- **Gamma/Hadron discrimination** above TeV at distances > 40 m from the core
STACEX: γ-ray astronomy in the South

A 150 \times 150 m2 water pool covered by a RPC carpet with a lead layer on top with array around up to 200 \times 200 m2 operated at 5000 m asl.

1 rl Pb \rightarrow mainly to improve the angular resolution

RPC \rightarrow space-time pattern starting from the 100 GeV range

Water Cherenkov Detector \rightarrow mainly for γ/h discrimination (only muon tagging?)

A water pool inside a building can be more easily insulated even to favour RPC operations

With only muon tagging reduced water depth? Easier water supplying!
Main Goal: 100 GeV energy threshold

The key: extreme altitude

Showers of all energies have the same slope after shower max:
≈1.65x decrease per r.l.
So, for all energies, if a detector is located 1 r.l. higher in atmosphere,
the result will be a ≈1.65x decrease in the energy observable.

E = 100 GeV ➔ ~100 e.m. particles at 5200 m asl

Lowering the energy threshold:

- Extreme altitude (≈5000 m asl)
- Detector and layout
- Coverage and granularity of the read-out
- Trigger logic
- Detection of secondary photons
Mean LDF at 5200 m asl

At 100 GeV

- $R = 100 \text{ m} \rightarrow <\rho> \approx 0.0001 \text{ electrons/m}^2, 0.001 \text{ photons/m}^2$
- $R = 10 \text{ m} \rightarrow <\rho> \approx 0.003 \text{ electrons/m}^2, 0.015 \text{ photons/m}^2$

Full coverage approach! with high granularity of the read-out
Secondary particle spectra at 5200 m asl

WCD sensitivity to single ~ 10 MeV - 15 MeV photons is a challenge!

RPCs detect all particles starting from KeV!

→ Crucial for energy resolution!
Energy resolution

The energy resolution is given by the folding of

Shower fluctuations
Fluctuations in the depth of the first interaction point

Sampling fluctuations
Fluctuations in the measured number of secondary particles

Can be reduced with high coverage and high granularity of the read-out → all particles are measured!

1 TeV gamma-ray shower

1st Interaction

Distribution of height of 1st interaction

Shower fluctuations dominate energy resolution of EAS arrays.

1st Interaction

Ground level

HAWC: 40% - 55% at 1 TeV (gamma internal)
HAWC: 23% - 30% at 50 TeV (gamma internal)

ARGO: 10% at 10 TeV (protons internal)
ARGO: 5% at 100 TeV (protons internal)

IACT: 8% - 15% at 1 TeV
IACT: 15% - 35% at 50 TeV
The 100 GeV challenge (ARGO-YBJ)

Why ARGO-style RPC carpet a crucial component of a new experiment?

ARGO-YBJ: the only array who measured the Crab spectrum starting from ≈300 GeV!

The combination of high-altitude site (4300 m. a.s.l.), high fill-factor (92% active area), low RPC noise, high segmentation of the read-out and a dedicated trigger allowed this achievement.

High read-out segmentation:
• pads 56 x 62 cm² for timing and trigger
• strips 7 x 62 cm² to count the particle number

Inclusive trigger by a majority of 20 pads out 15,600 pads, accidental free!

Very silent pads (380 Hz, a half from soil radioactivity) and a particle multiplicity built up correlating at different time scales increasing portions of the carpet (cluster, supercluster,…. full detector) made it possible to achieve this performance.

RPCs are the only detection technique who demonstrated the capability to detect showers in the 100 GeV range
Imaging capability of a RPC carpet

Small and compact low energy events

Fired pads on the carpet

Arrival time vs position

Space pixels: 146,880 strips (7 x 62 cm²)
Time pixels: 18,360 pads (56 x 62 cm²)
The PeV challenge (ARGO-YBJ)

These RPCs have been also equipped with 2 large Big Pads to collect the total charge and measure the number of particle hitting the detector. Indeed the operation in streamer mode assures a high uniformity of the charge delivered by each particle.

Particle number used as energy proxy
- time resolution about 1.5 ns (including electronics)
 - up to 20/m² by digital read-out ➔ 200 TeV
 - up to 8 x 10⁴/m² at least by charge read-out, resolution = 20% /√N + 4.4% ➔ 10 PeV

High stability (efficiency ≈ 97%, T = 8° ÷ 22° C)
 - the main drawback: the need of a high gas flow, about 4 volume changes /day
 - for a large-scale use a gas recirculation/purification system is needed to operate these RPCs in closed loop

![Graph showing charge readout and strips saturation]
The imaging capability of RPCs ARGO-style

The same shower as seen by the digital readout (left) and by the charge readout (right)

Unprecedented details in the core region
Gamma/Hadron discrimination with arrays

Classical technique:
measurement of the *muon content* event by event

But, muon size very small: \(\approx 3 \, \mu\) per TeV (protons)

\[\text{Only at high energies muon counting is a powerful gamma/hadron discriminator (> 5 - 10 TeV)!}\]

HAWC/LHAASO approach requires large area:
discrimination based on topological cut in the pattern of energy deposition far from the core (>40 m).

But topology requires sufficient number of triggered channels
(>70 - 100) \(\Rightarrow\) minimum energy required: \(E > 0.7 - 1\) TeV?

Background discrimination < TeV is OPEN PROBLEM!

Very small number of particles \(\Rightarrow\) topology can be hardly applied

New ideas < TeV?

- Combined measurement of space-time pattern \(\Rightarrow\) RPCs
Conclusions

- Extragalactic transient detection requires *low threshold, ≈100 GeV*.
- *Extreme altitude* (≈5000 m asl), *full coverage* and *high granularity of the read-out* are key.
- *Background rejection below TeV challenging* ⇒ *space + time*?
- *Selection of primary masses* up to 10 PeV crucial ⇒ *RPCs with charge readout*
- Capability of Water Cherenkov facilities in selecting primary masses must be investigated.

STACEX final layout still under investigation (only 150×150 m² carpet, preliminary!):

- *Energy threshold*: 100 GeV with ARGO-style RPCs not an issue
- *Angular resolution*: ≈0.7° at 100 GeV
- *Energy resolution*: ≈10% at 10 TeV
- *Effective area*: ≈6000 m² at 100 GeV

STACEX Sensitivity ≈10% Crab at 100 GeV
Background rejection in Milagro

compactness parameter

\[C = \frac{N_{\text{bot} \geq 2\text{PEs}}}{PE_{\text{maxB}}} \]

where \(N_{\text{bot} \geq 2\text{PEs}} \) is the number of PMTs in the bottom layer with more than 2 PEs, and \(PE_{\text{maxB}} \) is the number of PEs in the bottom layer tube with the maximum number of PEs.

\[A_4 = \frac{(f_{\text{top}} + f_{\text{out}}) \times N_{\text{fit}}}{PE_{\text{maxB}}} \]

- \(f_{\text{top}} \) is the fraction of the air shower layer PMTs hit in an event.
- \(f_{\text{out}} \) is the fraction of the outriggers hit in an event.
- \(N_{\text{fit}} \) is the number of PMTs that entered in the angle fit.

\((f_{\text{top}} + f_{\text{out}}) = \) info on the size of the shower

\(N_{\text{fit}} \) carries information about how well the shower was reconstructed. \(PE_{\text{maxB}} \) carries information about the **clumpiness in the muon layer** that is due to the penetrating muons and hadrons which are mostly presented in hadronic air showers.

Consistent with ARGO findings after cuts on \(\chi^2 \) of the temporal fit

Abdo, PhD thesis
Dimensions are important...

- Algorithm looks for high-amplitude hits more than 40 m from the reconstructed core location

G. Sinnis, 2010
Energy threshold and resolution

ARGO-YBJ (all triggered events)

Energy frequency (arbitrary units)

N_{pad} interval
1: 20-39
2: 40-59
3: 60-99
4: 100-199
5: 200-299
6: 300-499
7: 500-999
8: 1000-1999
9: \geq 2000

HAWC (2019) internal events only

Energy threshold and resolution

full coverage RPC carpet operated at 4300 m asl

coverage \approx 92%
high granularity (cm level)
Topological-based Trigger logic;
>20 pads out of 15,000 bkg free!
Noise: 380 Hz/pad

array of water tanks operated at 4100 m asl

coverage \approx 60%
poor granularity (m level)
Trigger rate: 24 kHz
Noise: 20-30 kHz/8” PMT (40-50 kHz/10” PMT)
The flaring γ-ray sky: Mrk421

ARGO-YBJ (E > 300 GeV)
FERMI-LAT (E > 0.3 GeV)
SWIFT-BAT (15-50 keV)
RXTE-AMS (2-12 keV)
MAXI-GSC (2-20 keV)
SWIFT-XRT (0.3-10 keV)
SWIFT-UVOT (UVW1)
OVRO (15 GHz)

ARGO-YBJ 5 years
30 days bins
7 days bins

γ/p detection efficiency

Increasing the γ/hadron relative trigger efficiency

$$R = \sqrt{\frac{A_{\text{eff}}^\gamma(E)}{A_{\text{eff}}^B(E)}}$$

The number of particles in γ-showers exceeds the number of particles in p-showers at extreme altitude.

Trigger probability of a detector larger for γ-showers than for p-showers at extreme altitude.

Better close to the core

The energy threshold ‘suggests’ the appropriate altitude.

G. Di Sciascio - INFN
TeVPA 2019, Sydney Dec. 2-6, 2019