ALPACA :
A new air shower array experiment to explore 100TeV gamma-ray sky in Bolivia

Takashi Sako (University of Tokyo) for the ALPACA Collaboration
ALPACA:
A new air shower array experiment to explore 100TeV gamma-ray sky in Bolivia

Search for ReVPArticle accelerators

Takashi Sako (University of Tokyo) for the ALPACA Collaboration
The ALPACA Collaboration

IIF, UMSA, Bolivia
 Martin SUBIETA, Rolando TICONA, Hugo RIVERA,
 Mirko RALJEVICH, Carla CALLE, Pedro MIRANDA
Faculty of Education, Utsunomiya Univ., Japan
 Naoki HOTTA
Japan Atomic Energy Agency, Japan
 Harufumi TSUCHIYA
Dept. of Physics, Shinshu Univ., Japan
 Kazuoki MUNAKATA, Chihiro KATO,
 Wataru KIHARA, Yukino KO
ICRR, Univ. of Tokyo, Japan
 Masato TAKITA, Takashi SAKO,
 Monteiro OHNISHI, Kazumasa KAWATA,
 Takashi K. SAKO, Sei KATO, Yoshichika YOKOE
College of Industrial Technology, Nihon Univ., Japan
 Atsushi SHIOMI
Tokyo Metropolitan College of Industrial Tech., Japan
 Toshiharu SAITO
National Inst. of Informatics, Japan
 Masaki NISHIZAWA

RIKEN, Japan
 Norio TAJIMA
Faculty of Engineering, Kanagawa Univ., Japan
 Kinya HIBINO, Shigeharu UDO, Wakiko TAKANO
Faculty of Engineering, Yokohama National Univ., Japan
 Yusaku KATAYOSE, Yukako SENGOKU,
 Hiroko MITSUI, Kaho YAGISAWA,
 Toshihiro OHURA, Hiroki NAKADA
College of Engineering, Chubu Univ., Japan
 Akitoshi OSHIMA, Shoichi SHIBATA
Faculty of Engineering, Aichi Inst. of Tech., Japan
 Hiroshi KOJIMA
Graduate School of Science, Osaka City Univ., Japan
 Shoichi OGIO, Yoshiki TSUNESADA, Mayta ROSA
Faculty of Engineering, Osaka Electro-Communication University, Japan
 Yuichiro TAMEDA
Graduate School of Information Sciences, Hiroshima City University, Japan
 Koichi TANAKA
Key Lab of Particle Astroparticle Physics, IHEP, CAS, China
 Yoshiaki NAKAMURA
Figure S3 shows the relative muon number (N_{muon}) vs. $N_{\text{shower particle}}$.

For the cosmic-ray background events, the muon cut ($N_{\mu} < 1$) is consistent with that estimated by the photon MC simulation. This is unequivocal evidence for photon-induced air showers from cosmic-ray induced air showers. As shown in Figure 2 in the paper, the muon cut ($N_{\mu} > 1$) distribution above 100 TeV for the Crab nebula events is more than 100, while the muon cut ($N_{\mu} = 1$) distribution is roughly proportional to energy, and the muon cut line in Figure 2 at the observed E_{γ} region, and the relative muon distribution after the muon cut ($N_{\mu} < 1$) is used as the parameter to discriminate. In this paper, the total number of particles detected in the MDs ($N_{\mu} > 100 \text{ TeV}$, where the muon cut ($N_{\mu} = 1000$) roughly corresponds to $\sim 10 \text{ ns}$, but examining the raw PE distributions in data shows the shift due to systematics in the lowest energies by scaling the PSF up by this amount and re-fitting the Crab using the calibration system.

The charge uncertainty encapsulates how much a PMT efficiency from the calibration system can be seen in Figure 13. The maximum significance map above 56 TeV in reconstructed energy for the GP simulation can be seen in Figure 13, and arose from a mismodeling of the light in the air shower. This is thought to stem from a late light in the air shower. This effect is almost completely negligible. The charge uncertainty is not yet having an energy dependence. The charge uncertainty encapsulates how much a PMT efficiency from the calibration system can be seen in Figure 13. The maximum significance map above 56 TeV in reconstructed energy for the GP simulation can be seen in Figure 13, and arose from a mismodeling of the light in the air shower. This is thought to stem from a late light in the air shower. This effect is almost completely negligible. The charge uncertainty is not yet having an energy dependence.

100 TeV γ Fever in 2019

Tibet ASγ Collaboration, PRL 123, 051101 (2019)

HAWC in Sierra Negra

ALPACA
(Andes Large area PArticle detector for Cosmic ray physics and Astronomy)
Mt. Chacaltaya, Bolivia

JMSA CR Observatory
5200 m a.s.l.

ALPACA site
4740 m a.s.l.

4,740 m above sea level
(16° 23’S, 68° 08’W)
ALPACA exposure (hours/year)

- Observation time (hour/year) with zenith angle $\theta<45^\circ$
- >2000 hours/year observations for major objects including Galactic center
Array layout of ALPACA

- 400 x 1m² plastic scintillators
- (7mx8m unit) x 12 x 8 (TBD) underground water Cherenkov muon detectors (5400m²)
- 2.2m underground (1GeV muon threshold)

Angular resolution: 0.2° @ 100TeV
Energy resolution: 20% @ 100TeV
ALPACA sensitivity to the H.E.S.S. sources

- Solid lines: observed results by H.E.S.S.
- Dashed lines: extrapolation from the H.E.S.S. results
- Many 10TeV objects with hard spectra → Possible PeVatrons
- Variety of categories, not only SNRs
- Even no-detection determines the maximum energy
current status

- ALPAQUITA -

(little ALPACA, ALPACA-chan)

• Prototype array of ALPACA
 • 20% area of full ALPACA with 97 surface detectors
 • 1 underground muon detector (700-1000m2) to be constructed in 2020 (position TBD)

• Purpose
 • Detection of bright gamma-ray sources
 • Cosmic-ray anisotropy in the Southern hemisphere, space weather study

Detector material arrived at Bolivia early 2019
Sensitivity to Vela X \((\alpha, \delta) = (08^h35^m00^s, -45^\circ36'00'')\)

Differential flux from inner region + ring:

\[
d\!N/dE = N_0 E^{-\Gamma} \exp(-E/E_{\text{cut}}) \text{ (TeV}^{-1}\text{cm}^{-2}\text{s}^{-1})
\]

\[
N_0 = 2.1 \times 10^{-11} \text{ (TeV}^{-1}\text{cm}^{-2}\text{s}^{-1}), \ E_{\text{cut}} = 14.0\text{TeV}, \ \Gamma = 1.32
\]
Effective area for Vela X trajectory

Inner area (12,600m²)

$\theta < 40^\circ$

$40 < \theta < 60^\circ$
Optimization of MD location (study on going)

- case1: optimized for full ALPACA array
- case2: optimized for ALPAQUITA only

\[\Sigma N_\mu: \text{Total number of detected muons in one shower event} \]
\[\Sigma \rho: \text{Total number of particles [In 39.8 \leq \Sigma \rho < 63.1 (~12 \text{ TeV})]} \]
Bin–by–bin yearly detection significances (Vela X)

<table>
<thead>
<tr>
<th></th>
<th>Case 1: Using lower-left MD</th>
<th>Case 2: Using center MD</th>
</tr>
</thead>
<tbody>
<tr>
<td>~ 8 TeV (25.1 ≤ Σρ < 39.8)</td>
<td>2.52 ± 0.05</td>
<td>3.30 ± 0.08</td>
</tr>
<tr>
<td>~ 12 TeV (39.8 ≤ Σρ < 63.1)</td>
<td>3.03 ± 0.08</td>
<td>3.98 ± 0.14</td>
</tr>
<tr>
<td>~ 18 TeV (63.1 ≤ Σρ < 100)</td>
<td>3.83 ± 0.18</td>
<td>4.73 ± 0.28</td>
</tr>
<tr>
<td>~ 30 TeV (100 ≤ Σρ < 158)</td>
<td>2.81 ± 0.06</td>
<td>3.80 ± 0.09</td>
</tr>
</tbody>
</table>
ALPAQUITA in October 2019
ALPAQUITA in October 2019

- All 97 basements placed
- Assembly of 20 detectors completed
- Cable channels finalized soon
- Assembly of all detectors, cabling, first data taking as soon as possible in 2020
- First muon detector in design, to be constructed in 2020
Summary

• ALPACA is a new air shower array project to explore 100TeV sky in the Southern hemisphere

• Many H.E.S.S. sources can be studied at >10TeV
 • Systematic search of 100TeV emission and cutoff below 100TeV

• Prototype array ALPAQUITA under construction
 • surface array construction to be completed and operation starts early 2020
 • first muon detector construction in 2020
Backup
Power and water

- アレイ周りの柵の設置
- エレキ・作業用ハットの建設
- GPS測量による設置位置の最終確認
- 電力線の移動（これまでのチャカルタヤ観測所までのラインを移動）
- 取水用ポンプ、排水設備の設置
ALPACA exposure (hours/year)

- Galactic Center, RX J1713: >2,000 hours/year ($\theta<45^\circ$)
- >1,000 hours/year for Crab
- $\theta<60^\circ$ allows 3000 hours/year
 - Effects on threshold energy, resolution must be studied

<table>
<thead>
<tr>
<th>Object name</th>
<th>Declination (degree)</th>
<th>Exposure (hours/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crab</td>
<td>22.0</td>
<td>1171</td>
</tr>
<tr>
<td>W51</td>
<td>14.2</td>
<td>1634</td>
</tr>
<tr>
<td>W28</td>
<td>-23.3</td>
<td>2331</td>
</tr>
<tr>
<td>Galactic Center</td>
<td>-29.0</td>
<td>2322</td>
</tr>
<tr>
<td>RX J1713.7-3946</td>
<td>-39.8</td>
<td>2176</td>
</tr>
<tr>
<td>Vela</td>
<td>-45.6</td>
<td>2016</td>
</tr>
<tr>
<td>RX J0852.0-4622</td>
<td>-46.4</td>
<td>1989</td>
</tr>
<tr>
<td>RCW86</td>
<td>-62.4</td>
<td>0</td>
</tr>
<tr>
<td>LMC</td>
<td>-67.6</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 3: default

- Zenith angle limit, $\theta<45^\circ$ and the reduction of geometrical area by $\cos(\theta)$ are taken into account.
ミューオン検出器

- 2020年度に建設予定
- 土盛り＋コンクリート天井 2.5m ($E_\mu > 1$GeV)
- 7.5m × 7.5m のユニットを16基
- 1ユニットあたりPMT 1本
- 内壁をタイベックシートで覆い集光
- 25 p.e./1 MIP (Tibet実績)
- Full ALPACAを考えた建設位置の検討 => 加藤
H.E.S.S. TeV Galactic Plane Survey

• Many gamma-ray sources along the Galactic plane
• Any source beyond 10^{14}eV?
Air shower simulation

Corriska7.6400 is used in a MC simulation

<table>
<thead>
<tr>
<th>Simulation condition</th>
<th>(\gamma)-ray</th>
<th>Background CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total # of events</td>
<td>(5.0 \times 10^7) (27 yr for Vela X)</td>
<td>① (300\text{GeV} < E < 10\text{PeV} : 1.1 \times 10^9) (0.6 yr for Vela X)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>② (10\text{TeV} < E < 10\text{PeV} : 1.0 \times 10^8) (18 yr for Vela X)</td>
</tr>
<tr>
<td>Energy range</td>
<td>(300\text{GeV} < E < 10\text{PeV})</td>
<td>(300\text{GeV} < E < 10\text{PeV})</td>
</tr>
<tr>
<td>Spectrum</td>
<td>(\propto E^{-2.0})</td>
<td>See the figure below</td>
</tr>
<tr>
<td>Injected range (from the center of the array)</td>
<td>300m radius</td>
<td>300m radius</td>
</tr>
</tbody>
</table>

Cosmic-ray spectrum
