Probing Extreme Gravity through Gravitational-wave Observations

Kent Yagi University of Virginia

> TeVPA, Sydney Dec. 5th 2019

Goal

strong

Strong & Dynamical Gravity

[PRL 116, 221101 (2016); PRX 6, 041015 (2016); PRL 118, 221101 (2017); PRL 119, 141101 (2017); ApJL 848, L13 (2017); arXiv:1811.00364; arXiv:1903.04467; ...]

- residual signal-to-noise ratio (SNR) from best-fit template
 GR prediction for GW150914 verified within 4% error
- ✓ Non-GR polarization

<u>GW170817</u>

Bayesian Model Selection: (tensor only) vs (scalar only) = 10^{21} : 1 (tensor only) vs (vector only) = 10^{23} : 1

[PRL 116, 221101 (2016); PRX 6, 041015 (2016); PRL 118, 221101 (2017); PRL 119, 141101 (2017); ApJL 848, L13 (2017); arXiv:1811.00364; arXiv:1903.04467; ...]

- residual signal-to-noise ratio (SNR) from best-fit template
 GR prediction for GW150914 verified within 4% error
- ✓ Non-GR polarization
- Propagation speed of GWs dispersion relation of gravitons

scalar-tensor theories after GW170817

graviton mass bounds

	Event	m_g [10 ⁻²³ eV/c ²]
	GW150914	10
	GW151012	17
	GW151226	29
	GW170104	9.4
	GW170608	30
	GW170729	7.6
ų.	GW170809	9.6
	GW170814	8.8
	GW170818	7.4
	GW170823	6.4
	Combined	5.0

[LVC arXiv:1903.04467]

[PRL 116, 221101 (2016); PRX 6, 041015 (2016); PRL 118, 221101 (2017); PRL 119, 141101 (2017); ApJL 848, L13 (2017); arXiv:1811.00364; arXiv:1903.04467; ...]

- residual signal-to-noise ratio (SNR) from best-fit template GR prediction for GW150914 verified within 4% error
- ✓ Non-GR polarization
- Propagation speed of GWs dispersion relation of gravitons
- ✓ Number of spacetime dimension
- Lorentz violation
- Equivalence principle
- Parameterized deviation from GR

parameterized post-Einsteinian (ppE) Formalism

Theories	PPE Phase Parameters				
THEOHES	Magnitude (β)				
Scalar-Tensor [95, 96]	$-rac{5}{7168}\eta^{2/5}(lpha_1-lpha_2)^2$	-7			
Einstein-dilaton Gauss-Bonnet	$-\frac{5}{7168}\zeta_{\rm EdGB}\frac{\left(m_1^2\tilde{s}_2^{\rm EdGB}-m_2^2\tilde{s}_1^{\rm EdGB}\right)^2}{m^4\eta^{18/5}}$	-7			
dynamical Chern-Simons	$\frac{1549225}{11812864}\eta^{-14/5}\zeta_{\rm dCS}\left[-2\delta_m\chi_a\chi_s + \left(1 - \frac{16068\eta}{61969}\right)\chi_a^2 + \left(1 - \frac{231808\eta}{61969}\right)\chi_s^2\right]$	-1			
Einstein-Æther [99]	$-\frac{5}{3584}\eta^{2/5}\frac{(s_1^{\text{EA}}-s_2^{\text{EA}})^2}{[(1-s_1^{\text{EA}})(1-s_2^{\text{EA}})]^{4/3}}\left[\frac{(c_{14}-2)w_0^3-w_1^3}{c_{14}w_0^3w_1^3}\right]$	-7			
Khronometric [99]	$-\frac{5}{3584}\eta^{2/5}\frac{(s_1^{\rm kh}-s_2^{\rm kh})^2}{[(1-s_1^{\rm kh})(1-s_2^{\rm kh})]^{4/3}}\sqrt{\bar{\alpha}_{\rm kh}}\left[\frac{(\bar{\beta}_{\rm kh}-1)(2+\bar{\beta}_{\rm kh}+3\bar{\lambda}_{\rm kh})}{(\bar{\alpha}_{\rm kh}-2)(\bar{\beta}_{\rm kh}+\bar{\lambda}_{\rm kh})}\right]^{3/2}$	-7			
Noncommutative [100]	$-\frac{75}{256}\eta^{-4/5}(2\eta-1)\Lambda^2$	-1			
Varying- G [92]	$\boxed{-\frac{25}{851968}\eta_0^{3/5}\dot{G}_{C,0}\left[11m_0+3(s_{1,0}+s_{2,0}-\delta_{\dot{G}})m_0-41(m_{1,0}s_{1,0}+m_{2,0}s_{2,0})\right]}$	-13			

[Tahura & KY (2018)]

Constraining GR Fundamental Pillars

Constraining GR Fundamental Pillars

PPE for Modified GW Propagation

$$c = 1$$
 [Will PRD57 2061 (1998), Mirshekari et al. PRD85 024041 (2012)]

-graviton dispersion relation

$$E^2 = p^2 + A p^{\gamma} \quad \Longrightarrow \quad v_g^2 \approx 1 + (\gamma - 1) A E^{\gamma - 2}$$

[PRL 116, 221101 (2016); PRX 6, 041015 (2016); PRL 118, 221101 (2017); PRL 119, 141101 (2017); ApJL 848, L13 (2017); arXiv:1811.00364; arXiv:1903.04467; ...]

- residual signal-to-noise ratio (SNR) from best-fit template GR prediction for GW150914 verified within 4% error
- ✓ Non-GR polarization
- Propagation speed of GWs dispersion relation of gravitons
- ✓ Number of spacetime dimension
- ✓ Lorentz violation
- Equivalence principle
- Parameterized deviation from GR
- Consistency test of GR Kerr with inspiral and post-inspiral

Future Improvement on IMR Consistency Tests

Future Improvement on IMR Consistency Tests

Future Improvement on IMR Consistency Tests

Einstein-dilaton Gauss-Bonnet (EdGB) gravity

 $D_L = 267 \pm 52 \text{ Mpc}$

 $\mathcal{L} \sim R + \alpha e^{\phi} R_{\rm GB}^2$

Black Hole / Neutron Star (Future Prospect)

Black Hole / Neutron Star (Future Prospect)

Black Hole / Neutron Star (Future Prospect)

Conclusions

Takeaway

- ✓ can be applied to specific theories such as string-inspired ones
- black hole / neutron star binaries will improve the bounds significantly

- various tests of GR with GWs being carried out
- ✓ no evidence for beyond-GR effects so far
- ✓ model-independent analyses include parameterized tests & inspiral-merger-ringdown consistency tests

Takeaway

- ✓ can be applied to specific theories such as string-inspired ones
- black hole / neutron star binaries will improve the bounds significantly

Thank You!

- various tests of GR with GWs being carried out
- ✓ no evidence for beyond-GR effects so far
- ✓ model-independent analyses include parameterized tests & inspiral-merger-ringdown consistency tests

Back Up

Future Detectors

Theoretical Constraints

Example Theories (Theoretical Parameters)	GR Pillar	Example Theory Constraints		
		GW150914	GW151226	Others
Einstein-dilaton Gauss-Bonnet ($\sqrt{ \alpha_{\rm EdGB} }$ [km])	Equiv. Princ.		4.7	$10^7, 2$
scalar-tensor $(\dot{\phi} \ [1/sec])$	Equiv. Princ.			10^{-6}
dynamical Chern-Simons $(\sqrt{ \alpha_{dCS} } \ [km])$	Parity Inv.	—		10^{8}
Einstein-Æther (c_+, c)	Lorentz Inv.	(0.9, 2.1)	(0.8, 1.1)	(0.03, 0.003)
RS-II Braneworld ($\ell \ [\mu m]$)	4D	${\bf 5.4\times10^{10}}$	$2.0\times\mathbf{10^9}$	$10 - 10^3$
time-varying $G (\dot{G} /G [10^{-12}/yr])$	Equiv. Princ.	$5.4\times\mathbf{10^{18}}$	$\boldsymbol{1.7\times10^{17}}$	0.1–1
Massive Gravity $(m_g [eV])$	$m_g = 0$	10^{-22}	10^{-22}	$10^{-29} - 10^{-18}$
Modified Special Bel $(\eta_{\rm dsrt}/L_{\rm Pl} > 0)$	Lorentz Inv.	$1.3 imes10^{22}$	$3.8 imes \mathbf{10^{22}}$	
$(\eta_{\rm dsrt}/L_{\rm Pl}<0)$				2.1×10^{-7}

graviton dispersion relation: E^2 =

$$= (p \ c)^2 + A \ (p \ c)^{\alpha}$$

[Mirshekari, Yunes & Will (2011)]