DarkSide-20k and the Direct Dark Matter Search with Liquid Argon

Tom Thorpe for the DarkSide collaboration

Overview

DARKBIDE

- Dual phase Argon TPCs
- DarkSide-50
- DarkSide-20k technologies

G

C

GRAN SASSO

SCIENCE INSTITUTE

S

- Prototypes
- Summary

LNGS

Tom Thorpe - TeVPA 2019 - Sydney

Overview

- Dual phase Argon TPCs
- DarkSide-50
- DarkSide-20k technologies

G

S

S

- Prototypes
- Summary

Overview

- Dual phase Argon TPCs
- DarkSide-50
- DarkSide-20k technologies

S

G

S

GRAN SASSO

- Prototypes
- Summary

Dual Phase TPC Cartoon

 Primary event discrimination exploits the S1 time signature

02-12-2019

Dual Phase TPC Cartoon

- Primary event discrimination exploits the S1 time signature
- X and Y are reconstructed by localizing the S2 signal
- Z is reconstructed via the drift time (time difference between S2 and S1)
- Further event discrimination can be done with S2

02-12-2019

Why Liquid Argon?

 Excited states relax by emitting 128 nm photons

ΕN

- Very different decay times of singlet (~ 7 ns) vs. triplet (~ 1500 ns) state
- Electron recoils cause a higher fraction of triplet states than nuclear recoils
- Results in superior electron rejection
- DS-50 rejected 1.5 x 10⁷, all, ER events in AAr run from 8.6 - 65.6 keV
 - Statistics limited
 - <u>arxiv:1410.0653</u>
- DEAP-3600 has just shown an ER leakage factor of 4.1 x 10⁻⁹ from 15.6 - 32.9 keV w/ 90% NR acceptance

arxiv:1902.04048

02-12-2019

Why Liquid Argon?

 Excited states relax by emitting 128 nm photons

FΝ

- Very different decay times of singlet (~ 7 ns) vs. triplet (~ 1500 ns) state
- Electron recoils cause a higher fraction of triplet states than nuclear recoils
- Results in superior electron rejection
- DS-50 rejected 1.5 x 10⁷, all, ER events in AAr run from 8.6 - 65.6 keV
 - Statistics limited

arxiv:1410.0653

DEAP-3600 has just shown an ER leakage factor of 4.1 x 10⁻⁹ from 15.6 - 32.9 keV w/ 90% NR acceptance

arxiv:1902.04048

02-12-2019

Tom Thorpe - TeVPA 2019 - Sydney

Why Liquid Argon?

200

t [µs]

Nuclear Recoil

(NR)

 $S1 \leq S2$

Electron Recoil

(ER)

S1 << S2

150

150

10

100

S2

50

50

 Excited states relax by emitting 128 nm photons

FN

- Very different decay times of singlet (~ 7 ns) vs. triplet (~ 1500 ns) state
- Electron recoils cause a higher fraction of triplet states than nuclear recoils
- Results in superior electron rejection
- DS-50 rejected 1.5 x 10⁷, all, ER events in AAr run from 8.6 - 65.6 keV
 - Statistics limited

arxiv:1410.0653

DEAP-3600 has just shown an ER leakage factor of 4.1 x 10⁻⁹ from 15.6 - 32.9 keV w/ 90% NR acceptance

arxiv:1902.04048

02-12-2019

Tom Thorpe - TeVPA 2019 - Sydney

200 t [µs]

DarkSide-50 Structural Overview

Water Cherenkov detector

FN

- Stainless steel cylinder d=11 m; h=10 m
- 1,000 tonnes of ultra pure water
- Active veto for muons and passive shield for external radiation
- 80 8" PMTs
- Liquid scintillator detector
 - 4 m stainless steel sphere
 - 30 tonnes of Boron loaded scintillator
 - Active gamma and neutron veto thanks to ¹⁰B loading
 - 110 8" PMTs
- Inner LAr TPC...

Tom Thorpe - TeVPA 2019 - Sydney

DarkSide-50 Inner TPC

- PTFE cylinder containing 46 kg (37 kg fiducial) LAr
- Inner surfaces coated with wavelength shifter -Tetraphenyl Butadiene (TPB)
- Cathode and anode have Indium Tin Oxide (ITO) transparent layers on the fused silica windows and TPB coating
- 38 3" Hamamatsu PMTs R11065; 19 each on top and bottom
- Fused silica diving bell to contain the 1 cm gas pocket

DarkSide-50 Inner TPC

- PTFE cylinder containing 46 kg (37 kg fiducial) LAr
- Inner surfaces coated with wavelength shifter -Tetraphenyl Butadiene (TPB)
- Cathode and anode have Indium Tin Oxide (ITO) transparent layers on the fused silica windows and TPB coating
- 38 3" Hamamatsu PMTs R11065; 19 each on top and bottom
- Fused silica diving bell to contain the 1 cm gas pocket
- Underground Argon (UAr)
 - Argon extracted from CO₂ wells in Colorado
 - Further purification via a cryogenic distillation column at Fermilab
 - Result is (1.4±0.2) x 10³ fewer ³⁹Ar events than atmospheric Argon

DarkSide-50 Underground Argon

Tom Thorpe - TeVPA 2019 - Sydney

DarkSide-50 Results (High Mass)

02-12-2019

Tom Thorpe - TeVPA 2019 - Sydney

DarkSide-50 Results (Low Mass)

- Low-Mass: S2-only analysis
 - Physical Review Letters 121 (8), 081307 (2018)
 - <u>arxiv:1802.06994</u>
- Sub-GeV: S2-only analysis; DM-Electron
 - Physical Review Letters 121 (11), 111303 (2018)
 - arxiv:1802.06998

Current Sensitivity

The Case for DarkSide-20k

If the number of background events is < 0.1, assuming the correct model, then as few as five events would claim discovery

18

Projected Sensitivity

DS-20k Cartoon

We want:

- To increase exposure by ~ 10³ or 10⁴
- Same total number of background events: < 0.1

We need:

- Less radioactivity
- Photo detectors optimized for 87K

02-12-2019

DarkSide-20k Structural Overview

UAr condenser

- ProtoDUNE like cryostat
- Optical and EM barrier
- Neutron veto will use Gd doped acrylic panels and Atmospheric Argon (AAr)
- Inner TPC will be a sealed acrylic vessel containing UAr
- Separate cryogenic systems for UAr and AAr volumes
- Acrylic knowledge from DEAP-3600 is being implemented

02-12-2019

 Silicon Photo Multipliers (SiPMs) will replace PMTs in TPC and veto (not shown)

Photo Electronics for DS-20k

02-12-2019

Tom Thorpe - TeVPA 2019 - Sydney

PDM Performance

- Photo Detection Efficiency (PDE) ~50%
- FBK, Trento IT, NUV-HD-LF tech
 - Optimized for LAr temperatures
 - > 90% fill factor
- Power consumption required to be $<100\;\mu W/mm^2$
- 0.1 Hz/mm² dark count rate
- < 10 ns timing resolution</p>
- Single Photo Electron (SPE) resolution
- High SNR

Individual PDM channels

Tile #

Photo Electronics Production - NOA

- FBK technology transfer to LFoundry (Avezzano, IT) for production of raw SiPM wafers
- Production facility for SiPM based photo electronics located at LNGS
- Equipment procurement has begun
- DS-20k production will be the first task

FΝ

Photo Electronics Production - NOA

- FBK technology transfer to LFoundry (Avezzano, IT) for production of raw SiPM wafers
- Production facility for SiPM based photo electronics located at LNGS
- Equipment procurement has begun
- DS-20k production will be the first task
- Final testing facility for 25cm² photo detectors is being constructed in Naples

~40m

DARKBIDE

Production - Urania - CO, US

02-12-2019

Tom Thorpe - TeVPA 2019 - Sydney

Underground Argon (UAr)

Production - Urania - CO, US

02-12-2019

Purification - Aria -Sardinia, IT

- Ground/sea transport
- Final product will allow for multi-tonne scale experiments

Tom Thorpe - TeVPA 2019 - Sydney

27

Aria - First Results w/ Nitrogen

DARKBIDE

02-12-2019

Tom Thorpe - TeVPA 2019 - Sydney

DArT - Measuring Argon Purification

- Measure the depletion factors of the UAr produced by Urania and Aria
- Depletion factor of 10⁴ should give ~85 events per week
- 99.99% OFHC Cu; Acrylic coated w/ TPB
- ~1L active volume

ΕN

- 2 x 1cm² SiPMs as photo sensors (DArTeye)
- To be housed in center of ~1 tonne AAr in the ArDM detector, CanFranc, acting as veto

Design and construction of a new detector to measure ultra-low radioactive-isotope contamination of argon. DarkSide collaboration; In preparation for JNIST.

Active Neutron Veto

- Primary work in Genoa and Torino
- No more organic liquid scintillators at LNGS...
- Will utilize LAr and Gd doped acrylic panels
- 10 cm thick vessel surrounding TPC
- 300 tonnes AAr; ~3000 "PDMs"
- Requires higher dynamic range than the inner TPC
- Integrated front end electronics
- R&D for reflector and WLS is ongoing

Active Neutron Veto

- Primary work in Genoa and Torino
- No more organic liquid scintillators at LNGS...
- Will utilize LAr and Gd doped acrylic panels
- 10 cm thick vessel surrounding TPC
- 300 tonnes AAr; ~3000 "PDMs"
- Requires higher dynamic range than the inner TPC
- Integrated front end electronics
- R&D for reflector and WLS is ongoing

Active Neutron Veto

- Primary work in Genoa and Torino
- No more organic liquid scintillators at LNGS...
- Will utilize LAr and Gd doped acrylic panels
- 10 cm thick vessel surrounding TPC
- 300 tonnes AAr; ~3000 "PDMs"
- Requires higher dynamic range than the inner TPC
- Integrated front end electronics
- R&D for reflector and WLS is ongoing

02-12-2019

32

Inner TPC

drift

- Sealed octagonal acrylic vessel
- ~50 tonnes Depleted underground Argon (DAr)
 - 20 tonnes fiducial
- 8280 PDMs
 - Split evenly on top/bottom
- Clevios conductive polymer coating
- TPB coating for WLS

Inner TPC

- Sealed octagonal acrylic vessel
- ~50 tonnes Depleted underground Argon (DAr)
 - 20 tonnes fiducial
- 8280 PDMs
 - Split evenly on top/bottom
- Clevios conductive polymer coating
- TPB coating for WLS

Proto-1T

- Scaled down version of DS-20k inner TPC
- ~ 350 kg active volume
- 250 PDM channels, possibly 370
- Assembly starting Summer 2020
- Photo electronics are being produced and tested in Italy
- Cryogenics work is being done at CERN
- Acrylic vessel work is being done in Canada (DEAP)

Proto-1T

- Scaled down version of DS-20k inner TPC
- ~ 350 kg active volume
- 250 PDM channels, possibly 370
- Assembly starting Summer 2020
- Photo electronics are being produced and tested in Italy
- Cryogenics work is being done at CERN
- Acrylic vessel work is being done in Canada (DEAP)

Proto-0

- Deployed at CERN
- Integrated with DS-20k technologies
- First LAr run with TPC and source just finished
- First experience of DAQ and analysis with 25 channel photo detectors in a LAr TPC
- New TPC design proven successful; fully functional
- Observed first S2 signals
- Run after the new year will study details of S2; X-Y

02-12-2019

Proto-0

Summary

- Dual phase Argon TPCs are a proven technology for background-free dark matter searches
 - Zero background > 10 GeV
- The GADMC is now pooling resources with DarkSide-20k as the next step
- DarkSide-20k could reach the neutrino floor using key technologies:
 - Large scale production of novel SiPM based cryogenic photo detectors
 - Extraction and purification of large quantities of low radioactivity underground Argon
 - TPC technologies Clevios, reflectors, SS wire grid, gas pocket formation...
 - Active neutron veto utilizing atmospheric Argon, Gd doped acrylic, SiPMs
 - Acrylic structural R&D
 - Acrylic knowledge and experience from DEAP-3600
- DarkSide-20k technology could also decrease the low mass WIMP cross section by orders of magnitude
- The future of this technology (Argo) aims to reach well into the neutrino floor

Thank You

Backup

DarkSide-50 Background Spectra (Low-Mass)

Tom Thorpe - TeVPA 2019 - Sydney

DarkSide-50 Limit (Low-Mass)

Tom Thorpe - TeVPA 2019 - Sydney

DarkSide-50 Results (Sub-GeV; DM-Electron)

02-12-2019

Tom Thorpe - TeVPA 2019 - Sydney