DarkSide-20k and the Direct Dark Matter Search with Liquid Argon

Tom Thorpe for the DarkSide collaboration
Overview

- Dual phase Argon TPCs
- DarkSide-50
- DarkSide-20k technologies
- Prototypes
- Summary
Overview

- Dual phase Argon TPCs
- DarkSide-50
- DarkSide-20k technologies
- Prototypes
- Summary
Overview

• Dual phase Argon TPCs
• DarkSide-50
• DarkSide-20k technologies
• Prototypes
• Summary
Primary event discrimination exploits the S1 time signature.
• Primary event discrimination exploits the S1 time signature
• X and Y are reconstructed by localizing the S2 signal
• Z is reconstructed via the drift time (time difference between S2 and S1)
• Further event discrimination can be done with S2
Why Liquid Argon?

- Excited states relax by emitting 128 nm photons
- Very different decay times of singlet (~7 ns) vs. triplet (~1500 ns) state
- Electron recoils cause a higher fraction of triplet states than nuclear recoils
- Results in superior electron rejection
- DS-50 rejected 1.5×10^7, all, ER events in AAr run from 8.6 - 65.6 keV
 - Statistics limited
- DEAP-3600 has just shown an ER leakage factor of 4.1×10^{-9} from 15.6 - 32.9 keV w/ 90% NR acceptance

\[f_{90} \sim 0.7 \]

\[f_{90} \sim 0.3 \]

\(\text{arxiv:1410.0653} \)

\(\text{arxiv:1902.04048} \)
Why Liquid Argon?

- Excited states relax by emitting 128 nm photons
- Very different decay times of singlet (~7 ns) vs. triplet (~1500 ns) state
- Electron recoils cause a higher fraction of triplet states than nuclear recoils
- Results in superior electron rejection
- DS-50 rejected 1.5×10^7, all, ER events in AAr run from 8.6 - 65.6 keV
 - Statistics limited
 - DEAP-3600 has just shown an ER leakage factor of 4.1×10^{-9} from 15.6 - 32.9 keV w/ 90% NR acceptance

f_{90} – fraction of light arriving within first 90 ns

This PSD is key for moving to ~100s of tonne*year exposures
Why Liquid Argon?

- Excited states relax by emitting 128 nm photons
- Very different decay times of singlet (~7 ns) vs. triplet (~1500 ns) state
- Electron recoils cause a higher fraction of triplet states than nuclear recoils
- Results in superior electron rejection
- DS-50 rejected 1.5×10^7, all, ER events in AAr run from 8.6 - 65.6 keV
 - Statistics limited

 arxiv:1410.0653

- DEAP-3600 has just shown an ER leakage factor of 4.1×10^{-9} from 15.6 - 32.9 keV w/ 90% NR acceptance

 arxiv:1902.04048

$\textbf{f}_{90} – \text{fraction of light arriving within first 90 ns}$

$\textbf{This PSD is key for moving to } \sim 100\text{s of tonne*year exposures}$

Nuclear Recoil (NR) $S1 \leq S2$

Electron Recoil (ER) $S1 << S2$

02-12-2019

Tom Thorpe - TeVPA 2019 - Sydney
Past, current experiments joining forces

DEAP-3600
DarkSide-50
MiniCLEAN
ArDM

59 institutions, > 400 researchers, 14 countries: Brazil, Canada, China, France, Greece, Russia, Italy, Mexico, Poland, Romania, Spain, Switzerland, UK, USA.

DarkSide-20k: 2022 - (LNGS)

Argo: ~ 2029 - (SNOLAB)

~ 300 tonnes
• Water Cherenkov detector
 • Stainless steel cylinder d=11 m; h=10 m
 • 1,000 tonnes of ultra pure water
 • Active veto for muons and passive shield for external radiation
 • 80 8” PMTs

• Liquid scintillator detector
 • 4 m stainless steel sphere
 • 30 tonnes of Boron loaded scintillator
 • Active gamma and neutron veto thanks to 10B loading
 • 110 8” PMTs

• Inner LAr TPC...
• PTFE cylinder containing 46 kg (37 kg fiducial) LAr
• Inner surfaces coated with wavelength shifter - Tetraphenyl Butadiene (TPB)
• Cathode and anode have Indium Tin Oxide (ITO) transparent layers on the fused silica windows and TPB coating
• 38 3” Hamamatsu PMTs R11065; 19 each on top and bottom
• Fused silica diving bell to contain the 1 cm gas pocket
DarkSide-50 Inner TPC

- PTFE cylinder containing 46 kg (37 kg fiducial) LAr
- Inner surfaces coated with wavelength shifter - Tetraphenyl Butadiene (TPB)
- Cathode and anode have Indium Tin Oxide (ITO) transparent layers on the fused silica windows and TPB coating
- 38 3” Hamamatsu PMTs R11065; 19 each on top and bottom
- Fused silica diving bell to contain the 1 cm gas pocket
- Underground Argon (UAr)
 - Argon extracted from CO₂ wells in Colorado
 - Further purification via a cryogenic distillation column at Fermilab
 - Result is \(1.4 \pm 0.2 \times 10^3\) fewer \(^{39}\)Ar events than atmospheric Argon
DarkSide-50 Results (High Mass)

- Exposure = 532 live days x 31.3 kg = 16660 kg*days
- 1.14×10^{-44} cm2 @ 100 GeV
- Underground Ar (UAr) activity \sim 0.7 mBq/kg
- $\text{LY} \sim 8$ photoelectrons/keV

Physical Review D 98 (10), 102006 (2018)
DarkSide-50 Results (Low Mass)

• Low-Mass: S2-only analysis
 • Physical Review Letters 121 (8), 081307 (2018)
 • arxiv:1802.06994

• Sub-GeV: S2-only analysis; DM-Electron
 • Physical Review Letters 121 (11), 111303 (2018)
 • arxiv:1802.06998
If the number of background events is < 0.1, assuming the correct model, then as few as five events would claim discovery.
We want:
• To increase exposure by $\sim 10^3$ or 10^4
• Same total number of background events: < 0.1

We need:
• Less radioactivity
• Photo detectors optimized for 87K
- ProtoDUNE like cryostat
- Optical and EM barrier
- Neutron veto will use Gd doped acrylic panels and Atmospheric Argon (AAr)
- Inner TPC will be a sealed acrylic vessel containing UAr
- Separate cryogenic systems for UAr and AAr volumes
- Acrylic knowledge from DEAP-3600 is being implemented
- Silicon Photo Multipliers (SiPMs) will replace PMTs in TPC and veto (not shown)
Individual SPADs 25-30 μm²
Single SiPM ~ 1 cm²

Single tile (24 SiPMs; (2|3_)x4; ~ 5 cm x 5 cm)

Front End Board

V_{bias}

TIA

x4 then summed

PDM
Photo Detection Module (Tile + FEB in acrylic cage; base detection unit; one summed readout channel)

25 PDMs with mechanical support structure; base mechanical unit for DS-20k; routing structure for power and signal readout contained

87K also allows for electronic advantages!

~ 5 cm x 5 cm x 5 cm

~ 25 cm x 25 cm x 5 cm

02-12-2019

Tom Thorpe - TeVPA 2019 - Sydney
• Photo Detection Efficiency (PDE) ~50%
• FBK, Trento IT, NUV-HD-LF tech
 • Optimized for LAr temperatures
 • > 90% fill factor
• Power consumption required to be < 100 μW/mm²
• 0.1 Hz/mm² dark count rate
• < 10 ns timing resolution
• Single Photo Electron (SPE) resolution
• High SNR

Details:

arxiv:1706.04213 arxiv:1706.04220 arxiv:1610.01915

SNR ~ 24

Preliminary
• FBK technology transfer to LFoudnry (Avezzano, IT) for production of raw SiPM wafers
• Production facility for SiPM based photo electronics located at LNGS
• Equipment procurement has begun
• DS-20k production will be the first task
• FBK technology transfer to LFoundry (Avezzano, IT) for production of raw SiPM wafers
• Production facility for SiPM based photo electronics located at LNGS
• Equipment procurement has begun
• DS-20k production will be the first task
• Final testing facility for 25cm² photo detectors is being constructed in Naples

~40m
Underground Argon (UAr)

Production - Urania - CO, US
Underground Argon (UAr)

Production - Urania - CO, US

Purification - Aria - Sardinia, IT

- Ground/sea transport
- Final product will allow for multi-tonne scale experiments
Aria - First Results w/ Nitrogen

Isotopic separation between 14N-14N and 14N-15N

Preliminary

S ≈ 1.29

18/10/19 19/10/19 20/10/19 21/10/19 22/10/19
17:30:00 02:07:20 10:44:40 19:22:00 03:59:20 05:36:40 21:14:00 05:51:20 14:28:40 23:06:00 07:43:20

0.4906 \pm 0.0001

0.8002 \pm 0.0001

1.571e+09 \pm 6.161e+01

3.23e+04 \pm 3.36e+01

~24m
• Measure the depletion factors of the UAr produced by Urania and Aria
• Depletion factor of 10^4 should give ~85 events per week
• 99.99% OFHC Cu; Acrylic coated w/ TPB
• ~1L active volume
• 2 x 1cm2 SiPMs as photo sensors (DArTeye)
• To be housed in center of ~1 tonne AAr in the ArDM detector, CanFranc, acting as veto

Design and construction of a new detector to measure ultra-low radioactive-isotope contamination of argon. DarkSide collaboration; In preparation for JNIST.

02-12-2019
Tom Thorpe - TeVPA 2019 - Sydney
Active Neutron Veto

- Primary work in Genoa and Torino
- No more organic liquid scintillators at LNGS...
- Will utilize LAr and Gd doped acrylic panels
- 10 cm thick vessel surrounding TPC
- 300 tonnes AAr; ~3000 "PDMs"
- Requires higher dynamic range than the inner TPC
- Integrated front end electronics
- R&D for reflector and WLS is ongoing
• Primary work in Genoa and Torino
• No more organic liquid scintillators at LNGS...
• Will utilize LAr and Gd doped acrylic panels
• 10 cm thick vessel surrounding TPC
• 300 tonnes AAr; ~3000 “PDMs”
• Requires higher dynamic range than the inner TPC
• Integrated front end electronics
• R&D for reflector and WLS is ongoing
• Primary work in Genoa and Torino
• No more organic liquid scintillators at LNGS...
• Will utilize LAr and Gd doped acrylic panels
• 10 cm thick vessel surrounding TPC
• 300 tonnes AAr; ~3000 “PDMs”
• Requires higher dynamic range than the inner TPC
• Integrated front end electronics
• R&D for reflector and WLS is ongoing
Inner TPC

- Sealed octagonal acrylic vessel
- ~50 tonnes Depleted underground Argon (DAr)
 - 20 tonnes fiducial
- 8280 PDMs
 - Split evenly on top/bottom
- Clevios conductive polymer coating
- TPB coating for WLS
Inner TPC

• Sealed octagonal acrylic vessel
• ~50 tonnes Depleted underground Argon (DAr)
 • 20 tonnes fiducial
• 8280 PDMs
 • Split evenly on top/bottom
• Clevios conductive polymer coating
• TPB coating for WLS

Xiang Xiao
Development of photosensor and inner detector in DarkSide-20k experiment
Thursday, 5 Dec 2019, 16:50
SNH 4002 (Messel)

350 cm drift

360 cm
• Scaled down version of DS-20k inner TPC
• ~ 350 kg active volume
• 250 PDM channels, possibly 370
• Assembly starting Summer 2020
• Photo electronics are being produced and tested in Italy
• Cryogenics work is being done at CERN
• Acrylic vessel work is being done in Canada (DEAP)
• Scaled down version of DS-20k inner TPC
• ~ 350 kg active volume
• 250 PDM channels, possibly 370
• Assembly starting Summer 2020
• Photo electronics are being produced and tested in Italy
• Cryogenics work is being done at CERN
• Acrylic vessel work is being done in Canada (DEAP)
• Deployed at CERN
• Integrated with DS-20k technologies
• First LAr run with TPC and source just finished
• First experience of DAQ and analysis with 25 channel photo detectors in a LAr TPC
• New TPC design proven successful; fully functional
• Observed first S2 signals
• Run after the new year will study details of S2; X-Y
• Integrated with 20k technologies
• Deployed at CERN
• Utilizing base mechanical units for photo detectors
• First LAr run with TPC and source just finished
• Observed first scintillation light from full photo detector
• Another run planned for January
Summary

- Dual phase Argon TPCs are a proven technology for background-free dark matter searches
 - Zero background > 10 GeV
- The GADMC is now pooling resources with DarkSide-20k as the next step
- DarkSide-20k could reach the neutrino floor using key technologies:
 - Large scale production of novel SiPM based cryogenic photo detectors
 - Extraction and purification of large quantities of low radioactivity underground Argon
 - TPC technologies – Clevios, reflectors, SS wire grid, gas pocket formation...
 - Active neutron veto utilizing atmospheric Argon, Gd doped acrylic, SiPMs
 - Acrylic structural R&D
 - Acrylic knowledge and experience from DEAP-3600
- DarkSide-20k technology could also decrease the low mass WIMP cross section by orders of magnitude
- The future of this technology (Argo) aims to reach well into the neutrino floor
Thank You
DarkSide-50 Background Spectra (Low-Mass)

The graph illustrates the background spectra for DarkSide-50, focusing on low-mass dark matter (DM) candidates. The x-axis represents the number of electrons (N_{e^-}) and the y-axis represents the events per day in units of $N_{e^-} \times [kg \times day]$. The data points are compared to theoretical predictions for different DM masses (M_χ): 2.5 GeV/c2, 5.0 GeV/c2, and 10.0 GeV/c2. The background contributions include data, G4DS MC All, cryostat γ-rays, PMTs γ-rays, and 39Ar + 85Kr.

The graph shows a comparison between the observed data and the theoretical models, highlighting the regions where the data align with or deviate from the expected spectra.

02-12-2019
Tom Thorpe - TeVPA 2019 - Sydney
DarkSide-50 Limit (Low-Mass)
DarkSide-50 Results (Sub-GeV; DM-Electron)

Events / [N\text{e}^- \times kg \times day]

<table>
<thead>
<tr>
<th>Energy [keV\text{ee}]</th>
<th>Data</th>
<th>G4DS MC All</th>
<th>10 MeV/c^2</th>
<th>Cryostat γ-rays</th>
<th>PMTs γ-rays</th>
<th>35Ar + 85Kr</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>10^2</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>0.4</td>
<td>10^3</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>0.6</td>
<td>10^4</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>0.8</td>
<td>10^5</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>1.0</td>
<td>10^6</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

Dark Matter-Electron σ^e [cm^2]

<table>
<thead>
<tr>
<th>F_{em}</th>
<th>DarkSide-50</th>
<th>XENON100</th>
<th>XENON10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10^{-36}</td>
<td>10^{-37}</td>
<td>10^{-38}</td>
</tr>
</tbody>
</table>

Dark Matter-Electron σ^e [cm^2]

<table>
<thead>
<tr>
<th>F_{em}</th>
<th>DarkSide-50</th>
<th>XENON100</th>
<th>XENON10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10^{-36}</td>
<td>10^{-37}</td>
<td>10^{-38}</td>
</tr>
</tbody>
</table>

02-12-2019

Tom Thorpe - TeVPA 2019 - Sydney