

THE PRINCIPLE

Testing the WIMP paradigm (<u>and many others</u>) with ultra-low background, massive xenon detectors

LUCA GRANDI

THE UNIVERSITY OF CHICAGO ENRICO FERMI INSTITUTE KAVLI INSTITUTE FOR COSMOLOGICAL PHYSICS

Dark Matter exists, we see its gravitational effects when we look at the sky...

... but what is its Nature?

The universe contains about 5 times more matter than what we can account for!

PANDAX-I (120**kg**)

PandaX-47

LUX (250kg)

PANDAX-II (500**kg**)

XENON1T (2 TONNES)

MOST CONSTRAINING LIMITS ON HEAVY WIMP DIRECT DETECTION

THE PRINCIPLE

THE PRINCIPLE

THE PRINCIPLE

THE PRINCIPLE

THE PRINCIPLE

XENON TWO-PHASE TIME PROJECTION CHAMBERS

S1

S2

TIME

→ F

THE PRINCIPLE

SIMULTANEOUS MEASUREMENT OFIONIZATION 8 EXCITATION CHANNELS

FULL 3D POSITION RECONSTRUCTION

THE PRINCIPLE

SIMULTANEOUS MEASUREMENT OFIONIZATION 8 EXCITATION CHANNELS

FULL 3D POSITION RECONSTRUCTION

SPECTROSCOPIC CAPABILITIES DOWN TO KEV SCALE

THE PRINCIPLE

SIMULTANEOUS MEASUREMENT OFIONIZATION 8 EXCITATION CHANNELS

FULL 3D POSITION RECONSTRUCTION

SPECTROSCOPIC CAPABILITIES DOWN TO KEV SCALE

EFFICIENT IDENTIFICATION OF NR VS ER

THE PRINCIPLE

SIMULTANEOUS MEASUREMENT OFIONIZATION 8 EXCITATION CHANNELS

FULL 3D POSITION RECONSTRUCTION

SPECTROSCOPIC CAPABILITIES DOWN TO KEV SCALE

EFFICIENT IDENTIFICATION OF NR VS ER

& "EASY" TO PURIFY XENON TARGETS

IDEAL FOR WIMP SEARCHES (WITH MASS DOWN TO FEW GEVIC²) (VIA NUCLEUS SCATTERING)

SIMULTANEOUS MEASUREMENT OF IONIZATION & EXCITATION CHANNELS

FULL 3D POSITION RECONSTRUCTION

SPECTROSCOPIC CAPABILITIES DOWN TO KEV SCALE

EFFICIENT IDENTIFICATION OF NR VS ER

CAN BE IMPLEMENTED IN MULTI-TON
 8 "EASY" TO PURIFY XENON TARGETS

IDEAL FOR WIMP SEARCHES (WITH MASS DOWN TO FEW GEVIC²) (VIA NUCLEUS SCATTERING)

FIDUCIALIZATION

+ CAN BE IMPLEMENTED IN MULTI-TON "EASY" TO PURIFY XENON TARGETS

FULL 3D POSITION RECONSTRUCTION

IDEAL FOR WIMP SEARCHES (WITH MASS DOWN TO FEW GEVIC²) (VIA NUCLEUS SCATTERING)

FIDUCIALIZATION & MULTI-HIT IDENTIFICATION

TIMÉ

IDEAL FOR WIMP SEARCHES (WITH MASS DOWN TO FEW GEV/C²) (VIA NUCLEUS SCATTERING)

FIDUCIALIZATION → BACKGROUND SUPPRESSION

- GAMMA- AND BETA-INDUCED EVENTS FROM DETECTOR MATERIALS (ER)
- NEUTRON-INDUCED EVENTS FROM **DETECTOR MATERIALS (NR)**

TIMÉ

IDEAL FOR WIMP SEARCHES (WITH MASS DOWN TO FEW GEVIC²) (VIA NUCLEUS SCATTERING)

FIDUCIALIZATION → BACKGROUND SUPPRESSION

+ CAN BE IMPLEMENTED IN MULTI-TON "EASY" TO PURIFY XENON TARGETS

IDEAL FOR WIMP SEARCHES (WITH MASS DOWN TO FEW GEVIC²) (VIA NUCLEUS SCATTERING)

FIDUCIALIZATION → BACKGROUND SUPPRESSION

LOW ENERGY THRESHOLD

- 2 OR 3-FOLD-COINCIDENCE ON S1
- SENSITIVITY TO 1 e⁻ ON S2

THRESHOLD OF ABOUT 2 keVee

IDEAL FOR WIMP SEARCHES (WITH MASS DOWN TO FEW GEVIC²) (VIA NUCLEUS SCATTERING)

FIDUCIALIZATION → BACKGROUND SUPPRESSION

LOW ENERGY THRESHOLD → SENSITIVITY ↑

- 2 OR 3-FOLD-COINCIDENCE ON S1
- SENSITIVITY TO 1 e- ON S2

THRESHOLD OF ABOUT 2 keVee

CAN BE IMPLEMENTED IN MULTI-TON 8 "EASY" TO PURIFY XENON TARGETS

EFFICIENT IDENTIFICATION OF NR VS ER

SPECTROSCOPIC CAPABILITIES DOWN TO KEV SCALE

FULL 3D POSITION RECONSTRUCTION

IDEAL FOR WIMP SEARCHES (WITH MASS DOWN TO FEW GEVIC²) (VIA NUCLEUS SCATTERING)

FIDUCIALIZATION → BACKGROUND SUPPRESSION

LOW ENERGY THRESHOLD → SENSITIVITY ↑

- 2 OR 3-FOLD-COINCIDENCE ON S1
- SENSITIVITY TO 1 e⁻ ON S2

THRESHOLD OF ABOUT 2 keVee

+ CAN BE IMPLEMENTED IN MULTI-TON "EASY" TO PURIFY XENON TARGETS

SPECTROSCOPIC CAPABILITIES DOWN TO KEV SCALE

FULL 3D POSITION RECONSTRUCTION

IDEAL FOR WIMP SEARCHES (WITH MASS DOWN TO FEW GEVIC²) (VIA NUCLEUS SCATTERING)

FIDUCIALIZATION → BACKGROUND SUPPRESSION

LOW ENERGY THRESHOLD → SENSITIVITY ↑

BACKGROUND SUPPRESSION

SPECTROSCOPIC CAPABILITIES DOWN TO KEV SC

IDEAL FOR WIMP SEARCHES (WITH MASS DOWN TO FEW GEV/C²) (VIA NUCLEUS SCATTERING)

FIDUCIALIZATION \rightarrow BACKGROUND SUPPRESSION

LOW ENERGY THRESHOLD → SENSITIVITY ↑

BACKGROUND SUPPRESSION

ONCE FIDUCIALIZATION IS APPLIED. THE SURVIVING **BACKGROUND IS DOMINATED BY RADIOACTIVE** CONTAMINANTS DIFFUSED IN THE XE GAS:

- ²¹⁴Pb (RADON EMANATED BY MATERIALS INTO THE GAS)
- 85Kr (CONTAINED IN THE XENON GAS)

+ CAN BE IMPLEMENTED IN MULTI-TON **& "EASY" TO PURIFY XENON TARGETS**

IDEAL FOR WIMP SEARCHES (WITH MASS DOWN TO FEW GEVIC²) (VIA NUCLEUS SCATTERING)

FIDUCIALIZATION → BACKGROUND SUPPRESSION

LOW ENERGY THRESHOLD → SENSITIVITY ↑

BACKGROUND SUPPRESSION

LARGE EXPOSURES & LOW BCK \rightarrow SENSITIVITY \uparrow

+ CAN BE IMPLEMENTED IN MULTI-TON **& "EASY" TO PURIFY XENON TARGETS**

FULL 3D POSITION RECONSTRUCTION

2006	2007	2008	2009	2010	2011	2012	2013

LOW-ENERGY ELECTRON RECOIL BACKGROUND IN FIDUCIAL VOLUME

~1000
[events/(tonne*keV*day)]

	2014	2015	2016	2017	2018	2019	2020	2021	2022
		EL		ON RE					
		FI	DUCIA	AL VO	LUME				
				~	2				
		EVE			v ~ uay)j				
					VES	Τ			
			BAG	CKG	ROL	JND)		
			•		DAT	-			
† †	++++	Bel	SW 2	5 KeV	dom	inate	dby		
			ilern				חכ		
~^^	18-02		<u> </u>	J % TrC	$m^{214}F$	D (10uBq/	'kg of Rn)		
·V	,			9 % IIC	M = 0.05 K				

IDEAL FOR OTHER DM WHAP SEARCHES

(THROUGH NUCH FAR RECO ELECTRON

FIDUCIALIZATION \rightarrow BACKGROUND SUPPRESSION

LOW ENERGY THRESHOLD → SENSITIVITY ↑

CKCDOUND CUDDDCCCION SKUNDOND JULL KEJJION

LARGE EXPOSURES & LOW BCK \rightarrow SENSITIVITY \uparrow

FULL 3D POSITION RECONSTRUCTION

<u>CEELCIENT IDENTIFICATION OF NO VO FO</u>

LI I CILINI IDLINI II ICATION OF NIN 5 LI

OTHER DM WHP SEARCHES

(THROUGH NUCLEAR RECO ELECTRON

FIDUCIALIZATION → BACKGROUND SUPPRESSION

LOW ENERGY THRESHOLD → SENSITIVITY ↑

BACKGROUND SUPPRESSION

LARGE EXPOSURES & LOW BCK → SENSITIVITY ↑

PRIMORDIAL ALPS

PANDAX-II

(2017) 181806 119. Phys. Rev.

IDEAL FOR OTHER DM WHAP SEARCHES

(THROUGH NUCLEAR RFC ELECTRON

FIDUCIALIZATION → BACKGROUND SUPPRESSION

LOW ENERGY THRESHOLD → SENSITIVITY ↑

CICEDOLINE CLIPPECCION UNDOND SUFFRESSION

LARGE EXPOSURES & LOW BCK → SENSITIVITY ↑

DARK PHOTONS

DM-INDUCED ANNUAL RATE MODULATIONS

Phys. Rev. D 98, 062005 (2018)

IDEAL FOR RARE PROCESS SEARCHES (THROUGH ELECTRON RECOIL)

FIDUCIALIZATION → BACKGROUND SUPPRESSION

LOW ENERGY THRESHOLD → SENSITIVITY ↑

BACKGROUND SUPPRESSION

LARGE EXPOSURES & LOW BCK → SENSITIVITY ↑

SOLAR AXIONS

LUX

Rev. Lett. 118, 261301 (2017) Phys.

IDEAL FOR RARE PROCESS SEARCHES (THROUGH ELECTRON RECOIL)

FIDUCIALIZATION → BACKGROUND SUPPRESSION

LOW ENERGY THRESHOLD → SENSITIVITY ↑

VCDALINIA CLIDADECCIAN UNCOND SOFT RESSION

LARGE EXPOSURES & LOW BCK → SENSITIVITY ↑

~1KG OF ¹²⁴XE PER TONNE

THE PRINCIPLE

ONLY IONIZATION CHANNEL (SCINTILLATION BELOW THRESHOLD)

TIME

ONLY IONIZATION CHANNE (SCINTILLATION BELOW THRESHOLD)

JLL 3D POSITION RECONSTRUCTION X.Y POSITION

SPECTROSCOPIC CAPABILITIES DOWN TO <u>SUB</u> KEV

FEFICIENT IDENTIFICATION OF NO VO FD EFFICIENT IDENTIFICATION OF INK VS EK

+ CAN BE IMPLEMENTED IN MULTI-TON **& "EASY" TO PURIFY XENON TARGETS**

THRESHOLD OF ABOUT 4-5 $e^- \rightarrow 0.2 \text{ keV}_{ee}$

BACKGROUND CONTROL IS MORE CHALLENGING AND FULL BACKGROUND MODELING IS STILL MISSING

CAN BE USED TO EXCLUDE DM PARAMETER SPACE

ARXIV:1907.11485V1

+ CAN BE IMPLEMENTED IN MULTI-TON **8** "EASY" TO PURIFY XENON TARGETS

<u>CIENT IDENTIFICATION OF NO VO FO</u> CILINI IDLINI II ICATION OF NIV VOLIN

SPECTROSCOPIC CAPABILITIES DOWN TO <u>SUB</u> KEV

OSITION RECONSTRUCTION X.Y POSITION

ONLY IONIZATION (SCINTILLATION BELOW THRESHOLD)

THRESHOLD OF ABOUT 4-5 $e^- \rightarrow 0.2 \text{ keV}_{ee}$

BACKGROUND CONTROL IS MORE CHALLENGING AND FULL BACKGROUND MODELING IS STILL MISSING

CAN BE USED TO EXCLUDE DM PARAMETER SPACE

ARXIV:1907.11485V1

AXION-LIKE PARTICLES

DARK PHOTONS

THRESHOLD OF ABOUT 4-5 $e^- \rightarrow 0.2 \text{ keV}_{ee}$

BACKGROUND CONTROL IS MORE CHALLENGING AND FULL BACKGROUND MODELING IS STILL MISSING

CAN BE USED TO EXCLUDE DM PARAMETER SPACE

ARXIV:1907.11485V1

S.I. LIGHT WIMP

+ MIGDAL EFFECT

PANDAX-I (120**kg**)

PandaX-47

MENONNT

XENONnT

SENSITIVITY BOOST

TPC

XENON1T DESIGNED TO ALLOW FAST UPGRADE OF ITS CENTRAL DETECTOR WITH A NEWER AND LARGER TPC 8.3 TONNE TOTAL 5.9 TONNE ACTIVE ~4 TONNE FIDUCIAL (X4)

IDENTIFIED AND TESTED SUCCESSFULLY STRATEGIES TO FURTHER SUPPRESS THE DOMINANT BACKGROUND (1/10TH)

FV

FAST UPGRADE

FAST

XENON1T TURNED OFF IN DEC 2018 AND DISASSEMBLED IN FEB 2019

XENONNT INSTALLATION STARTED IN THE SUMMER 2019

FIRST DATA IN 2020

1000 2000 200 10000 100 WIMP mass $[GeV/c^2]$ XENONNT

 10^{-43}

 $[\mathrm{cm}^2]$

р

WIMP-nucleon

10-47

10-481

7 10

20 30

STARTING COMMISSIONING IN 2020

LUXIZEPLIN

PANDAX-4T

STARTING COMMISSIONING IN 2021

XENONnT PROJECTED SENSITIVITY **4TON-FIDUCIAL** 5 YEARS

TIME PROJECTION CHAMBER

LARGEST TPC FITTING IN THE XENON1T OUTER VESSEL:

DIMENSIONS (Ø. HEIGHT)	1340MM. 1578MM (COLD)
TARGET MASS	5.9T (COLD)
# OF PMT IN TOP ARRAY	253
# OF PMT IN BOTTOM ARRAY	241

REDUCE RADON BKG?

REDUCE RADON SOURCES

REDUCE RADON BKG?

ONLINE RADON REMOVAL

A SINGLE DEDICATED COLUMN TO **REMOVE RN EMANATED BOTH IN** GAS AND LIQUID PHASES.

E.Aprile et al., Online ²²²Rn removal by cryogenic distillation in the XENON100 experiment, Eur. Phys. J. C 77 (2017)

REDUCE RADON BKG?

ONLINE RADON REMOVAL

CONCEPT ALREADY SUCCESSFULLY **TESTED IN XENON1T & XENON100.** THIS FEATURES A FASTER FLOW!

E.Aprile et al., Online 222Rn removal by cryogenic distillation in the XENON100 experiment, Eur. Phys. J. C 77 (2017)

REDUCTION WHEN OPERATING THE INVERTED AS TEST REMOVAL PLANT!

XENON1T MUON

TO ACT BOTH AS **MUON AND NEUTRON VETO**

VETO WILL BE REFURBISHED

<1EVENT IN 20 TONNE×YR

TAGGING EFFICIENCY > 85%

Gd-DOPED WATER

ADD 0.5% OF $Gd_2(SO_4)_3$ TO ULTRAPURE WATER TECHNOLOGY ESTABLISHED BY

EGADS FOR S-K-Gd

N-capture on Gd leads to 8MeV γ 's \rightarrow Compton electrons → Cherenkov light

arXiv:1707.07258

Background Source	Mass	$^{238}U_e$	$^{238}\mathrm{U}_l$	232 Th _e	232 Th _l	60 Co	40 K	n/yr	ER	NR
	(kg)		mBq/kg						(cts)	(cts)
Detector Components										
PMT systems	308	31.2	5.20	2.32	2.29	1.46	18.6	248	2.82	0.027
TPC systems	373	3.28	1.01	0.84	0.76	2.58	7.80	79.9	4.33	0.022
Cryostat	2778	2.88	0.63	0.48	0.51	0.31	2.62	323	1.27	0.018
Outer detector (OD)	22950	6.13	4.74	3.78	3.71	0.33	13.8	8061	0.62	0.001
All else	358	3.61	1.25	0.55	0.65	1.31	2.64	39.1	0.11	0.003
subtotal									9	0.07
Surface Contamination										
Dust (intrinsic activity, 50)0 ng/cn	n^2)							0.2	0.05
Plate-out (PTFE panels, 50 nBq/cm^2)									-	0.05
²¹⁰ Bi mobility (0.1 µBq/k	g LXe)								40.0	-
Ion misreconstruction (50	nBq/cn	n ²)							-	0.16
210 Pb (in bulk PTFE, 10 mBq/kg PTFE)								-	0.12	
		, ,					SI	ubtotal	40	0.39
Xenon contaminants										
222 Bn (1.81 uBg/kg)								681	_	
220 Bn (0.09 µBq/kg)								111	_	
nat Kr (0.015 ppt g/g)									24.5	-
nat Ar (0.45 ppb g/g)									2.5	-
subtotal									819	0
Laboratory and Cosmogenics										
Laboratory rock walls	0								4.6	0.00
Muon induced neutrons									-	0.06
Cosmogenic activation									0.2	-
subtotal								5	0.06	
Physics										
136 Xe $2\nu\beta\beta$							67	-		
Solar neutrinos: $pp+^{7}Be+^{13}N$								255	-	
Diffuse supernova neutrinos (DSN)								-	0.05	
Atmospheric neutrinos (Atm)								-	0.46	
subtotal							322	0.51		
Total							1195	1.03		
Total (with 99.5% ER discrimination, 50% NR efficiency)							5.97	0.52		
Sum of ER and NR in LZ for 1000 days, 5.6 tonne FV, with all analysis cuts							6.	49		

LZ expectation for 1000 days, 5.6 tonne FV, 99.5% rejection, 50% NR acceptance

FOR **WIMP SEARCH** WE CONSIDERED THE REGION OF INTEREST

> S1 → 3-70 PE~[5-41 KEV_R] ~[1.4-10.6 KEV_{EE}]

Efficiency @ low energy dominated by statistical fluctuations in the PE production and by signal reconstruction algorithms

Artificial loss of efficiency @ high energy caused by end of ROI [70 PE]

Michael Murra - Online krypton and radon removal for the XENON1T experiment – XeSAT 2017 Khon Kaen

