

Latest Results of the Dark Matter Particle Explorer (DAMPE) experiment

Jingjing Zang(藏京京)

Purple Mountain Observatory, CAS (on behalf of the DAMPE collaboration)

The DAMPE collaboration

- CHINA
 - Purple Mountain Observatory, CAS, Nanjing
 - Institute of High Energy Physics, CAS, Beijing
 - National Space Science Center, CAS, Beijing
 - University of Science and Technology of China, Hefei
 - Institute of Modern Physics, CAS, Lanzhou
- ITALY
 - INFN Perugia and University of Perugia
 - INFN Bari and University of Bari
 - INFN Lecce and University of Salento
 - INFN LNGS and Gran Sasso Science Institute
- SWITZERLAND
 - University of Geneva

DAMPE experiment is sponsored by Chinese Academy of Sciences and supported by many institutes from China, Italy and Switzerland.

>DAMPE instrument

>On-orbit performance

> Physical Results

≻Summary

DAMPE instrument

DArk Matter Particle Explorer (DAMPE)

Dark Matter Particle Explorer is a space-borne cosmic ray detection experiment measuring energy to over 10TeV

Instrument design

Plastic Scintillator Detector(PSD) ≻γ anticoincidence ≻Z-measurement Silicon Tungsten Tracker(STK) ≻γ convertor, particle track ≻Z-measurement

More details can be found at Astropart. Phys., 95, 6 (2017)

PSD detector

- 2 layers (x,y) of 88.4 cm × 2.8 cm × 1 cm
- \succ Active area: 82 cm \times 82 cm
- Weight : ~103 kg
- Power: ~ 8.5 W
- Charge Res.: 0.06 for Z=1 efficiency(99.99%)

Silicon tracker

Detection area: 76 cm x 76cm
Total weight: ~154 kg
Total power consumption: ~82W
Three 1mm tungsten (0.86X0)
Spatial resolution: 0.05mm

BGO calorimeter

- Outer envelop: 100 cm x 100 cm x 50 cm
- Detection area: 60 cm x 60 cm
- Total weight: ~1052 kg
- Total power consumption: ~ 41.6 W
- Energy res.: 1%@>50GeV

NUD neutron detector

中国科学院紫金山天文台

$$h + {}^{10}B \rightarrow \alpha + {}^{7}Li + \gamma$$

- 4 plastic scintillators with boron doped
- Active area: 60 cm x 60 cm
- Total weight: ~12 kg
- Total power: ~ 0.5 W
 ¹⁰

Typical Event Show

DARK MA

Proton & higher z particle electron gamma Z-X View Z-X View Z-X View Z-Y View Z-Y View Z-Y View

Over 500 configurations: $p, e^+, e^-, \pi^+, \gamma, \mu^+$, nuclear fragments with p=0.5GV~400GV

Test beam validation

中国科学院紫金山天文台

On-orbit performance

中国科学院紫金山天文台

STK direction measurement

MC

Geminga Stacked AGNs

E (GeV)

10¹

R 68

- R 05

 10^{-1}

100

DARK MA

BGO energy linearity

BGO energy linearity

Absolute energy scale

- > An energy scale higher by (1.2+/-1.3)% from the geomagnetic cutoff
- Cutoff energy is stable with time (a slight decrease due to solar modulation)

中国科学院教金山天文台

- We use the lateral (SumRMS) and longitudinal (energy ratio in last layer) developments of the showers to discriminate electrons from protons
- For 90% electron efficiency, proton background is ~2% @ 1TeV, ~5% @ 2 TeV, ~10% @ 5 TeV

Nature, 552, 63 (2017)

Stable Data Taking

DAMPE 3.5 year counts map

5M events/day 7.3 billion in total

Detector stability

Physical results

Total e⁺+e⁻ spectrum

Three different
 PID methods give
 very consistent
 results on event by-event level

Direct detection of a spectral break at ~0.9TeV with 6.6 confidence level

 Analysis with new data is on-going

Nature, 552, 63 (2017)

Errors of e⁺+e⁻ spectrum

- Cooling time of TeV electrons ~ Myr, effective propagation range ~ kpc
- Assuming a total SN rate of 0.01 per year, the total number of SNRs within the effective volume and cooling time is O(10)

Spectral structures of nuclei DAM

DARK MA

DAMPE proton spectrum

中国科学院教金山天文台

- Confirms the hundreds GeV hardening
- Reveals a softening at ~13 TeV with high significance

Chuan Yue et al.(2019) arxiv: 1909.12857

DAMPE helium spectrum

See:

Volume 358 - <u>36th International Cosmic Ray Conference (ICRC2019)</u> - CRD https://pos.sissa.it/358/058/

ARK

- > DAMPE detector is working extremely well since launch
- Precise measurements of the e⁺+e⁻ spectrum from 25 GeV to 4.6 TeV have been obtained, showing a spectral break at ~0.9 TeV energies
- Precise measurements of proton spectrum from 40 GeV to 100 TeV have been obtained, revealing interesting softening features at ~10 TeV
- > More results are coming

Energy measurement

中国科学院紫金山天文台

308 BGO bars

10⁴

10^5 MIPs

10⁶

10⁷

616 PMTs

- Thick calorimeter (32 X₀): high-resolution
 Two-side readouts
- Three dynode outputs enable a >10⁶ dynamic range

e/p separation at higher energies

For 90% electron efficiency, proton background is ~2% @ TeV, ~5% @ 2 TeV, ~10% @ 5 TeV.

Raw count spectra

Laser experiment

Three-component e⁺e⁻ model

Primary e- accelerated together with ions (in e.g., supernova remnants)

Secondary e- and e+ from hadronic interaction of cosmic ray nuclei

Additional e- and e+ from extra sources (e.g., pulsars, ...)