The 21cm probe of Cosmology

Xuelei Chen
National Astronomical Observatories
Chinese Academy of Sciences

University of Sydney, 2019.12.03
What is the 21cm line

ground state hydrogen atom

Redshifted to 21(1+z) cm

observe w.r.t. radio background: spin temperature

\[
\frac{n_1}{n_0} = 3e^{-\Delta E/k_BT_s} = 3e^{-T_\ast/T_s}
\]

\[
T_s = \frac{T_{CMB} + y_\alpha T_\alpha + y_c T_k}{1 + y_\alpha + y_c}
\]
Why 21cm observation

Ubiquitous: 76% of baryons

The observable Universe in comoving scale

A different perspective

mass relation

Tully-Fisher

Q. Guo et al. (2019), Nature Astronomy
The optical depth of a line passing along X direction
\[z = 10.1592 \]
\[Y = 227, Z = 473 \]
Foreground

raw signal to noise ration (SNR) \(\sim 10^{-5} \)

In principle, smooth foreground can be subtracted

V. Jelic et al. (2010)

X. Wang et al. (2006)
Cosmic Dark Ages

Loeb & Zaldarriaga 2004

But:

- The signal is redshifted to very low frequencies, ionosphere absorption—may need to observe from the farside of the moon

- Very strong galactic foreground, need extremely large array to achieve enough sensitivity

- First Step: global signal (DSL, DAPPER)

Barkana & Loeb 2005

\[N_{21cm} \sim 3 \times 10^{16} \left(\frac{l_{\text{max}}}{10^6} \right)^3 \left(\frac{\Delta \nu}{\nu} \right)(z/100)^{-1/2} \]
Cosmic Dawn

Reionization signal—Emission

Cosmic Dawn signal—Absorption
(XC& J. Miralda-Escude 2003, 2008)

Figure by K. Ahn et al.

Cohen et al. 2017
Model of Reionization

Bubble Model (Furlanetto, Hernquist, Zaldarriaga 2004):

- higher density → form more galaxies earlier
- ionize earlier → produce more ionizing photons

#photon needed = #photon produced

#photon needed = \(n_B V (1+n_{\text{rec}}) \)

#photon produced = \(\xi n_B V f_{\text{coll}} \)
Late Stage of EoR

- Overlapping bubbles—no longer isolated!
- Ionization equation: \#photons = local produced + background

\[
\xi f_{\text{col}}(\delta_M; M, z) + \frac{\Omega_m}{\Omega_b} \frac{\mathcal{N}_{\text{back}} m_H}{M X_H (1 + \bar{n}_{\text{rec}})} < 1,
\]
Stages of Reionization

Based on Minkowski functionals (Chen et al. 2018)

- Ionized Bubble Stage ($x_{HI} > 0.9$)
- Ionized Fiber Stage ($0.9 > x_{HI} > 0.7$)
- Sponge Stage ($0.7 > x_{HI} > 0.3$)
- Neutral Fiber ($0.3 > x_{HI} > 0.16$)
- Neutral Island Stage ($x_{HI} < 0.16$)

Broadly Consistent with Furlanetto & Oh (2016), Yoshiura et al. (2016), Bag et al. (2018)
Reionization

blue: largest ionized region
red: other ionized region
transparent: neutral

from bubble to fiber

From ionized fiber to sponge

blue: largest neutral region
red: other neutral regions
transparent: ionized

neutral island

neutral fiber
Power spectrum and Bias

neutral fraction cross power

![Graph showing power spectrum for neutral fraction](image1)

21cm cross power

![Graph showing power spectrum for 21cm cross power](image2)

Figure 4. The cross-power spectrum between the neutral fraction and the dark matter density. The solid and the dashed lines represent positive and negative values respectively.

Figure 5. The 21 cm brightness temperature and the dark matter density cross power spectrum. Top panel: early BoR, Bottom panel: late BoR. Solid and dashed lines represent positive and negative values respectively.

The density and neutral fraction anti-correlated on large scales

W. Xu et al. (2019)
The Reality: Mode Mixing foregrounds

Data = Instrument Response ✽ Sky + Noise

• The Instrument Response is **frequency dependent** (chromatic beam)
• The Instrument Response is **not smooth** (sidelobe, standing wave, ...)
• Instrument Response only known up to the precision of calibration (polarization leakage and cross-coupling between array elements, Faraday rotation of the polarization, ...)

Nevertheless, people hope to detect the cosmological 21cm signal!
Foreground Subtraction

Data covariance matrix:

\[C_{\mu \mu'} = \langle T_x(\mu)T_x(\mu') \rangle_x \]

PCA analysis:

\[C = TT^\dagger \]
\[Cv_i = \lambda_i v_i \]

Example: GBT (Masui et al. 2013)

Other foreground subtraction methods developed, e.g. ICA (L. Wolz), RPCA (Zuo et al.)
Power Spectra compensation

$$P_{SVD}(k) = T(k)P(k)$$

$$T(k) = \left(\frac{[w_A\Pi_{A+s}(T_A + T_s) - W_A\Pi_A T_A]^T Q_i T_s}{(w_AT_s)^T Q_i T_A} \right)^2$$

cross correlation with WiggleZ (Masui et al 2013)

auto correlation (Switzer et al. 2013)
EoR tomography Experiments

LOFAR

21CMA

PAPER

MWA
EoR 21cm experiments

HERA: 350 x 14m dish, measure the 3D 21cm power spectrum. Regular grid, redundant baseline calibration

SKA-low: 512 x 256 dipole, randomized uv coverage, imaging EoR region
EoR power spectrum

N. Barry et al. arxiv:1909.00561

Beardsley et al. arxiv:1910.02895
Global Spectrum Experiments

EDGES
SCI-HI/PRIZM
BIGHORN
SARAS-2
LEDA
REACH
DSL
How to achieve Precision Calibration

- Internal Calibration
- sky calibration: galaxy up down
EDGES-low result
Interpretation of the Result

The absorption observed by EDGES is much stronger than typical model, even stronger than maximum case!

\[T_{21}(z) \approx 0.023 \, \text{K} \times x_{\text{Hi}}(z) \left(\frac{0.15}{\Omega_m} \right) \left(\frac{1 + z}{10} \right)^{\frac{1}{2}} \left(\frac{\Omega_b h}{0.02} \right) \left[1 - \frac{T_R(z)}{T_S(z)} \right] \]

- foreground contamination (Hills et al. 2018)
- unknown systematics: e.g. underground water reflection, ionosphere
- colder baryons (cooled by interacting dark matter, \(T_S < 3.2 \, \text{K} \))
- extra-radio background \(T_R > 104 \, \text{K} \)
Excess Radio Background

• Maybe in the cosmic dawn, in addition to CMB, there is a radio background generated by early sources AGN, pop star, ... (Ewall-Wice et al. 2018)

• Must be very radio loud (Mirocha & Furlanetto 2018) but at high-z, inverse-Compton stronger, the main radio mechanism-synchrotron likely to be comparatively weaker (Sharma 2018)

• Constrained by reionization redshift, radio and X-ray source count, ...

• If global signal enhanced, fluctuation signal is also strong
Dark Matter Cooling

- DM is cooler than baryon as it decoupled earlier, but need baryon-DM interaction, temperature (energy) dependent, e.g. Coloumb interaction

\[\sigma(v) = \sigma_c \left(\frac{v}{c} \right)^{-4} = \sigma_1 \left(\frac{v}{1 \text{ km s}^{-1}} \right)^{-4} \]

- Severely constrained by various experiments

Barkana 2018

Berlin et al. 2018
Other Ideas

• Baryonic Universe + MOND (S. McGaugh)

• Early baryon decoupling (so it is colder) by an early dark energy (Hill & Haxter)

• Modify early Hubble parameter by Interacting dark energy (A. Costa et al.)

• Dark photon mixing (M. Pospelov et al.)

• axion Bose-Einstein condensation cooling (Houston et al. 2018)

• Dark matter decay to radio (Fraser et al.)

• Dark matter annihilation to radio (Yang)

• Dark force (Li & Cai)
Space Experiment

Ionosphere refraction and absorption also affects global spectrum.
Space-based low frequency radio observation

- Below 10MHz, due to ionosphere absorption, ground observation is nearly impossible.

Planck map

RAE-2 sky map (1979)
Experiments during CE-4 mission

- CE-4 Lander

- Netherland-China Low frequency Experiment (Relay Satellite)

- Longjiang orbiting satellites (piggy-back on relay satellite launch)—unfortunately, Longjiang-1 malfunctioned

- EMI limited sensitivity, and also work time is very short due to limited power, but still can see moon shield radiation from Earth
Discovering Sky at Longest (DSL) wavelength

- A linear array (5-8) of satellites moving around the moon, take observation at the backside of the moon, then transmit data back at the front side of the moon.

- A mother satellite measure the position of the daughter satellites

- Low frequency aims for imaging of foregrounds, high frequency aims to detect cosmic dawn signal by precise global spectrum measurement
Current mid-redshift Radio Telescopes

- Parkes (64m)
- GBT (105m)
- Arecibo (150m)
- FAST (500m)
- JVLA (27 dish)
- GMRT (27 dish)
- ASKAP (36 dish)
- MeerKAT (64 dish)
FAST survey

Wenkai Hu et al., Forecast for FAST: from Galaxies Survey to Intensity Mapping", arxiv:1909.10946

<table>
<thead>
<tr>
<th>receiver</th>
<th>band(GHz)</th>
<th>Beams</th>
<th>$T_{rec}(K)$</th>
<th>t_{mw}(days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-band</td>
<td>1.05-1.45</td>
<td>19</td>
<td>20</td>
<td>220</td>
</tr>
<tr>
<td>Wide-band</td>
<td>0.27-1.62</td>
<td>1</td>
<td>60</td>
<td>1211</td>
</tr>
<tr>
<td>UHFF PAF (future)</td>
<td>0.5-1.0</td>
<td>81</td>
<td>30</td>
<td>135</td>
</tr>
</tbody>
</table>

$$\theta = 1.22 \times \frac{21 \text{ cm}(1+z)}{300 \text{ m}} = 2.94(1+z) \text{ arcmin}$$

L-band beams

number density of detected galaxies

DETFF Figure of merit
Dedicated Experiments

• Stable, large field of view (also good FRB searcher)

\[
\frac{S}{N} = \sqrt{\frac{4\pi k^2 dk V_{\text{survey}}}{2(2\pi)^3}} \frac{P_{\text{HI}}}{P_{\text{HI}} + \left(\frac{dT_{\text{sky}} + T_a}{\sigma T_{\text{sig}} \sqrt{\text{int} \Delta f}}\right)^2 V_R + \frac{1}{n}},
\]
The Tianlai (heavenly sound) Experiment

- Cylinder pathfinder: 3x15m x 40m, 96 feeds
- Dish Pathfinder: 16 x 6m

Frequency: 700-800MHz, can be tuned in 600~1420MHz
probe of Large Scale Structure (BAO, PNG, inflation features)

Xu, Wang & Chen (2015)

Xu, Hamann, Chen (2016)
21cm Intensity Mapping Experiments

CHIME (1024 units)

Tianlai (96 units)

HIRAX (1024 units)

BINGO
Near Future: SKA-mid

SKA-1: 197 dish (15m) + 64 MeerKAT dish

SKA-2: ~ 3000 dish
Intensity Mapping
BAO measurements

BAO scales probed by SKA1 – dish versus interferometer

SKA Cosmology Workgroup (http://skacosmology.pbworks.com)
Future Ideas: PUMA

200 \sim 1100\text{MHz}, \ 6\text{m dish}, \ 10^4 \text{ elements}

Slosar et al., arxiv:1907.12559
Outlook

• 21cm experiments are easy (to start) and hard (to detect!)—lots of experiment efforts going on

• Varies approaches: global spectrum, single dish, regular and irregular interferometer arrays

• New and more powerful data analysis method: AI?

• The 21cm auto-correlation is still to be detected, but progresses are being made

• The 21cm cosmology is coming!
Thanks and Enjoy!
Backup slides
Problems with Lunar Array

Traditional imaging algorithm can not work!

- short dipole ($l \ll \lambda$) antenna have very wide field of view (almost whole sky), traditional synthesis algorithm only for small field of view (flat sky, small w-term)

- A mirror symmetry w.r.t. orbital plane, can be broken by 3D baselines (produced by orbital plane precession)

- Different baselines have different part of sky blocked by Moon

map-making by inversion

$$V = BT + n.$$ $$T = (B^\dagger N^{-1}B)^{-1}B^\dagger N^{-1}V \equiv B^{-1}V.$$

Huang et al., arXiv:1805.08259
galaxy detection vs intensity mapping

L_{SN}: luminosity scale for voxel shot noise
σ_L: rms noise per voxel
l_*: galaxy characteristic luminosity.

<table>
<thead>
<tr>
<th>number</th>
<th>regime</th>
<th>optimal strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$L_{SN} < \sigma_L < l_*$</td>
<td>galaxy detection</td>
</tr>
<tr>
<td>2</td>
<td>$\sigma_L < L_{SN} < l_*$</td>
<td>galaxy detection/intensity mappinga</td>
</tr>
<tr>
<td>3</td>
<td>$L_{SN} < l_* < \sigma_L$</td>
<td>intensity mapping</td>
</tr>
<tr>
<td>4</td>
<td>$l_* < L_{SN}$</td>
<td>intensity mapping</td>
</tr>
</tbody>
</table>

a Here the optimal strategy is an intermediate between the intensity mapping and galaxy detection observables.

$$\sigma_{SN}^2(l) = V_{\text{vox}} \phi_* \int_0^l dl' l'^{\alpha+2} e^{-l'}.$$