
PyHEADTAIL Space Charge Module
... an Overview!

Adrian Oeftiger

CERN – PyHEADTAIL Meeting #27
12 June 2019



Space Charge Models

: on GPU (based on PyPIClib’s solver) : on CPU : on CPU (optimisable)

frozen 3D fieldmap with interpolation (e.g. from beam blueprint)
−→ supports adaptive mode (auto-updating from beam distribution)
frozen transverse fieldmap with longitudinal self-consistent line
charge density
−→ pre-computed Bassetti-Erskine interpolated on large grid → faster

than exact version (equivalent to pre-computed table in SixTrack)
exact Bassetti-Erskine with slice-based actual rms sizes
self-consistent 3D PIC
self-consistent 2.5D PIC, recentring of transverse grids along slices
=⇒ also implemented adaptive aperture fixed to recentring grids!
self-consistent 2D PIC

To be implemented next:
−→ frozen exact Bassetti-Erskine (fixed r.m.s. sizes and line density)

1 of 4 Adrian Oeftiger PyHEADTAIL on the GPU – 12 June 2019



PyPIClib

The particle-in-cell part of the PyHEADTAIL space charge module depends
on PyPIClib1:

mainly implemented on GPU:
free space (open boundary) FFT with integrated Green’s function

−→ 2D, 3D
−→ 2.5D: parallel transverse 2D grids along longitudinal plane (slices)

linear algebra sparse matrix solver with Dirichlet boundary condition

PyHEADTAIL.spacecharge.pypic_spacecharge.SpaceChargePIC
calls:
−→ pypic.poissonsolver.is_25D (if True, also pypic.mesh.dz)
−→ pypic.mesh.dimension (assert 3D)
−→ pypic.pic_solve

1integrated under GPU directory in PyPIC, https://github.com/PyCOMPLETE/PyPIC/
stand-alone: https://github.com/aoeftiger/PyPIClib/

2 of 4 Adrian Oeftiger PyHEADTAIL on the GPU – 12 June 2019

https://github.com/PyCOMPLETE/PyPIC/
https://github.com/aoeftiger/PyPIClib/


Performance of 3D PIC

Timing of a single 3D open boundary FFT-based PIC kick for
1×106 macro-particles
mesh of 256×256×100

Table: Full Timing for Space Charge Node

hardware cores time [ms]

NVIDIA GPU Tesla P100 3584 53
NVIDIA GPU Tesla C2075 448 694

CPU Intel Xeon E5 1 1349

CPU-based kick implemented in a test bed:
https://github.com/aoeftiger/PIC_testground/blob/master/PIConCPU.ipynb ↗

=⇒ requires some whetting (p2m has a numerical bug somewhere), close
to being ready!

3 of 4 Adrian Oeftiger PyHEADTAIL on the GPU – 12 June 2019

https://github.com/aoeftiger/PIC_testground/blob/master/PIConCPU.ipynb


GPU Performance of 3D PIC

Relative timing on NVIDIA P100 GPU based on line-profiler:
1 particle-to-mesh interpolation: 1.7%
2 Poisson solve: 90.9%
3 electric field gradient: 3.7%
4 mesh-to-particle interpolation: 3.3%

(total: 99.6%, rest: 0.4%)

=⇒ Poisson solve takes most time, inside the poisson_solve python
function most time is spent inside cufft (GPU FFT) library: 98.6%

Conclusions
−→ python overhead in SC kick is negligible!
−→ recent high-end GPUs (since NVIDIA Maxwell architecture) profit

from double precision acceleration of atomic operations (meshing)
−→ GPU is the natural parallelisation approach!

4 of 4 Adrian Oeftiger PyHEADTAIL on the GPU – 12 June 2019



Thank you for your attention!


