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Summary

The particle-in-cell algorithm is the well established algorithm of choice to self-consistently model
space charge, the direct electromagnetic interaction between beam particles. The particle positions
are interpolated onto a regular mesh, where the discrete Poisson equation is solved for the electric
fields, and eventually these are interpolated back to the particles. The algorithm heavily relies on
memory interaction which makes computational parallelisation a non-trivial task.

We investigate the computational timing efficiency for the full 3D space charge model imple-
mented in PyPIClib, which is used by the collective effects simulation software PyHEADTATL.
Here we compare the timing of a space charge kick for a CPU to modern NVIDIA GPUs (graphics
processing units) with thousands of cores. We find that the algorithm strongly profits from the
GPU architecture, even when comparing to an openMP accelerated version on the 12-core CPU. In
particular, the initial particle to mesh interpolation step as well as the final mesh to particle inter-
polation step benefit from the large memory bandwidth on the GPUs in contrast to the openMP
accelerated CPU implementation. Therefore, we conclude that the GPU is a natural choice of
hardware to run heavy and/or long-term simulations with self-consistent space charge on.
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1 Introduction

CERN’s accelerator and beam physics group carries out computationally highly demanding
physics studies based on space charge. In this context, there is an ongoing performance
evaluation of simulation codes and frameworks in order to identify the ideal tools and com-
puting hardware architectures. The present document intends to provide a reference for the
timing of self-consistent space charge kicks as they are implemented in the CERN developed
tools PyPIClib and PyHEADTATIL. In particular, we investigate the benefit from exploiting
graphics processing units (GPUs) compared to traditional CPU computing.

The structure of this document is as follows: we first describe the PyHEADTATIL library
in some detail along with a brief introduction to how it has been parallelised on GPU
hardware. Next we describe the particle-in-cell algorithm, reviewing some peculiarities of
its GPU acceleration and the corresponding implementation in PyPIClib. Eventually, we
present the timing profiles on modern NVIDIA GPUs compared to CPUs.

2 Physics Context: the PyYHEADTAIL Library

PyHEADTAIL! is a collective beam dynamics simulation library written in Python, which
simulates the interaction of beam macro-particles among each other as well as with the ma-
chine environment during their storage time in a circular accelerator. Hence, the library offers
models of both direct interaction via the beam self-fields (space charge) as well as indirect
electromagnetic interaction via the machine environment (beam coupling impedance).

The PyHEADTATIL library is actively developed within the accelerator and beam physics
group at CERN and involves a dynamic developer community. The use cases vary often and
address the continuously changing demands from the physics scenarios. To address these
circumstances, the code was chosen to be written in the Python language: this approach (i.)
enables simple, fast and flexible implementation of new physics, (ii.) enhances code legib-
ility and maintenance, and (iii.) allows for rapid prototyping while profiting from dynamic
interaction with the code. To minimise the performance loss due to abstraction overhead,
the central and more static parts of PyHEADTAIL (having been identified as bottlenecks
via code profiling, e.g. the computation of the distribution statistics) are implemented in
low-level languages, mainly C and derivates.

The motion of beam macro-particles in PyHEADTAIL is modelled by alternate single-
and multi-particle dynamics in a drift-kick approach. Drifting refers to tracking the linear
betatron motion of all single macro-particles across a given machine segment. The collective
forces between the macro-particles are integrated over the current segment and are applied
as a lumped kick in the interaction point after each drift.

In the case of beam coupling impedances, these collective interaction points model the
generation and interaction with wake fields left by leading particles (i.e. effects such as
indirect space charge, resistive walls, resonating structures, etc.) and comprise a convolution
algorithm of the macro-particle distribution with a wake function. To this end, a 1D particle-
in-cell algorithm is usd to discretise the distribution for the convolution. Typically, one
such wake field kick per revolution is a good approximation to model the beam coupling

Uhttps://github.com/PyCOMPLETE/PyHEADTAIL
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impedances. In terms of performance, the computation of trigonometric functions within
the tracking matrices for each macro-particle dominates over the computation of the impact
of impedances for a single bunch.

In contrast, in the case of direct space charge one needs many collective interaction
points during a revolution (on the order of hundreds to thousands of integration steps).
A simple space charge model may assume a fixed beam field map for a bunch, which is
not self-consistently calculated from the actual macro-particle distribution. This makes the
simulation effectively embarrassingly parallel and single-particle-like. For a self-consistent
treatment, however, at each time step the macro-particle distribution is discretised and in-
terpolated onto a regular grid. Subsequently, the Poisson equation is solved for the potential
on the grid (e.g. via Fourier transform and free-space integrated Green’s functions) and the
solution is interpolated back to the macro-particle locations. This so-called particle-in-cell
algorithm yields space charge kicks for each macro-particle while self-consistently resolving
the entire distribution. It quickly becomes expensive in terms of computing power, as high
resolutions (i.e. number of grid cells, macro-particles and integration steps per revolution)
are needed to minimise numerical noise problems.

Accelerating PyHEADTAIL simulations with the aid of NVIDIA GPUs has been facilit-
ated by the PyCUDA library, making NVIDIA’s CUDA driver available on the Python level.
PyCUDA’s GPUArrays satisfy the NumPy API, which is the standard scientific computing
library for Python. Hence, many of PyHEADTATIL’s physics algorithms such as the tracking
could largely avoid code duplication (such as translation to CUDA). A context manage-
ment developed by Ref. [1] makes the usage of GPUs almost transparent to PyHEADTAIL
users and basic physics developers: depending on the CPU or GPU context, math func-
tion calls are redirected to the corresponding library (numpy and scipy for the CPU or
PyCUDA.GPUArray and scikit-cuda) or sometimes specific kernel implementations in
the GPU case. This approach reflects the need for flexibility, legibility and maintainability
of the code as explained in the outset.

As a result of the parallelisation approach, speed-up factors of around 50 have been
achieved using NVIDIA Tesla C2075 cards with respect to a single CPU core when simulat-
ing direct space charge. This memory-constrained multi-particle scenario is to be compared
to speed-up factors of 400 for embarrassingly parallel single-particle physics (programmed
in plain CUDA without performance loss due to intermediate Python layers) based on the
same hardware set-up [3]. This promising start made larger simulation campaigns possible,
such as e.g. investigating the interplay of direct space charge and beam coupling imped-
ances for instabilities in CERN’s Large Hadron Collider (LHC) at injection energy. These
simulations run for up to hundreds of thousands of revolutions, while some of the beam
and machine parameters have been scanned in fine intervals in separate runs. Without the
high-performance computing approach exploiting NVIDIA K20 and K40 GPUs, this study
would not have been possible due to maximum wall time and storage space constraints at
CERN’s current single-nodes cluster, 1xplus.

Currently, we investigate to extend PyHEADTAIL with advanced non-linear tracking
as provided by SixTrackLib? SixTrackLib is parallelised for both multi-core CPU
and GPU environments. A first step has been made with establishing an interface to

2https://github.com /rdemaria/sixtracklib
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SixTrackLib from PyHEADTAIL in Ref. [2]. With the non-linear tracking supporting
realistic machine lattices, PyHEADTAIL will be able to simulate accelerators much more
accurately — this is particularly important for resonance studies with space charge requiring
a precise model of the non-linear behaviour of the machine.

3 Particle-in-cell Algorithm

bla

3.1 Parallelised Particle to Mesh Interpolation on the GPU

The initial charge deposition on the grid discretises the beam particles onto a regular mesh.
This particle to mesh interpolation (p2m) step comprises the calculation of interpolated
weights for each mesh vertex at the corner of a cell for a given particle. These weights are
then readily added for each particle yielding the charge distribution on the mesh (which can
then subsequently be Poisson solved for the potential in a next step).

In PyPIClib we implemented two different algorithms for this p2m step: in the most
straightforward approach implemented in the PyPIC_GPU.particles_to_mesh method,
a GPU thread identifies a particle. In such a thread, the particle position gives (1.) the cell
ID with the adjacent mesh nodes as the cell corners, (2.) the distance to the mesh nodes is
computed, which (3.) determines the linearly interpolated weights for each adjacent mesh
node, and which (4.) are each directly added to a mesh memory entry. As many particles
can contribute to a given memory entry representing the local charge at the discretised mesh
node location, several threads may access this memory entry in parallel. To solve this race
condition it is necessary to use atomic operations — in this case atomicAdd: a given thread
accessing the mesh memory entry will thus lock it, read the value, add the corresponding
particle weight amount and write this new value to the mesh memory entry before releasing
the lock for another thread to access it.

Before NVIDIA’s Maxwell architecture, the atomic operations were only hardware ac-
celerated for single precision floating numbers. However, single precision is prohibitive for
the required accuracy: for a given mesh cell in the beam centre there can easily be hun-
dreds to thousands of macro-particles summed up for the mesh nodes charge. This is re-
peated for thousands of space charge kicks per revolution around the accelerator ring and
for hundreds of thousands of revolutions — hence, O(1077) single precision error for a single
operation rapidly sums up to non-negligible impact on the particle dynamics which is not
tolerable. PyPIC1lib allows to test this as PyPIC_GPU.particles_to_mesh accepts a
dtype keyword (np.float32 or np.float64). A simulation comparing both precisions
over 50000 turns for the CERN Large Hadron Collider using 2000 space charge kicks per
revolution clearly demonstrates the impact on the centroid motion: not only does the amp-
litude of the centroid oscillation change by a factor for a given time instant as shown in
Fig. 1la (this qualitatively different behaviour can impact stability thresholds for instability
simulations), but also the frequency spectrum of the centroid changes as shown in Fig. 1b
(potentially rendering the beam reaction to external excitation qualitatively quite different).
We conclude that single precision is not acceptable and we therefore have to live with double



precision atomic operations which are software emulated on pre-Maxwell GPUs.

The emulated atomicAdd leads to long memory access times for threads: these thread
memory stalls in turn resulted in suboptimal performance of this first algorithm. A way
out has been found at the time via a second approach, which we implemented in the
PyPIC_GPU.sorted_particles_to_mesh method. The approach relies on sorting the
particles by mesh cell and then identifies threads with mesh cells (and not particles like in the
first approach). The overhead of sorting can be compensated by the efficient memory access-
ing: this algorithm performed up to 3.5 times faster than the software emulated at omicAdd
approach on the Kepler architecture, as presented in Ref. [4]. One thus avoids the memory
stalls which typically happen when many atomic operations are accessing the same mesh
memory entry with the slow software emulated version.

On modern NVIDIA GPUs beyond the Kepler series (i.e. Maxwell, Pascal and the latest
Volta architecture) the atomic operations such as atomicAdd are also hardware accelerated
for double floating point precision®. Therefore we can avoid the software emulation of double
precision atomicAdd in the particle to mesh interpolation and threads do not stall anymore
for usual numerical parameters. Eventually the overhead of sorting renders the second
approach (with cell <> thread identification) performing less well than the first approach
(with particle <» thread identification) for the p2m step.

On a final note, if one wants to optimise the approach on a multi-core CPU, a similar
guard cell strategy as in the sorted GPU algorithm can be beneficial to avoid similar thread
stalls in openMP atomic operations, cf. Ref. [4].

3See https://docs.nvidia.com/cuda/maxwell-tuning-guide/index.html#fast-shared-memory-atomics as
well as https://docs.nvidia.com/cuda/pascal-tuning-guide/index.html#atomic-ops
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(a) Average of all macro-particle positions in the horizontal x and vertical y plane.
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(b) Spectra of average position evolution over last 2048 turns.

Figure 1: Difference of single precision (FP32) and double precision (FP64) particle to mesh
interpolation with its impact on beam dynamics.



4 Timings

For the timing we compare an NVIDIA Tesla P100 GPU, an older NVIDIA Tesla C2075 and
a Intel Xeon E5 (v1) CPU, cf. Tables 1 and 2.

Table 1: Relevant CPU Machine Specifications

CPU | 2x Intel Xeon E5-2630 (v1)
CPU cores | 2 x 6
RAM | 256 GB DDR3
CPU clock rate | 2.30 GHz
CPU L3 cache | 15 MB
instruction set | Intel AVX
32bit floating-point performance | 0.1 TFLOPS

Table 2: Relevant GPU Machine Specifications

| | CERN BE-ABP | CNAF
GPU | NVIDIA Tesla C2075 | NVIDIA Tesla K20 | NVIDIA Tesla K40
GPU devices 4 7 8

GPU DDR5 RAM (per device) 5.3 GB 5.1 GB 12.3 GB
GPU clock rate 1.15 GHz 0.7 GHz 0.75 GHz

CUDA cores per device 448 2496 2880

max. no of threads per block 1024 x 1024 x 64 1024 x 1024 x 64 1024 x 1024 x 64
CUDA computing capability 2.0 3.5 3.5
32bit floating-point performance 1.0 TFLOPS 3.5 TFLOPS 4.3 TFLOPS

Table 3: Full Timing for Space Charge Node

hardware cores | time [ms]
NVIDIA GPU Tesla P100 | 3584 53
NVIDIA GPU Tesla C2075 | 448 694
CPU Intel Xeon E5 1 1349

76ms single core vs 48ms openMP

4.1 Line Profiles of the GPU functions

The line-by-line timing profiles* of the particle-in-cell algorithm indicate in which parts
the algorithm spends most time. Here we present the results for the GPU accelerated

4based on the Python tool 1ine_profiler, https://github.com/rkern/line_profiler
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Table 4: Timing of Particle to Mesh Interpolation

hardware cores | time [ms]
NVIDIA GPU Tesla P100 | 3584 <1
NVIDIA GPU Tesla C2075 | 448 19
CPU Intel Xeon E5 1 206

Table 5: Timing of Poisson Solve (FFT)

hardware cores | time [ms]
NVIDIA GPU Tesla P100 | 3584 48
NVIDIA GPU Tesla C2075 | 448 648
CPU Intel Xeon E5 1 441

version of the algorithm, run on the NVIDIA Tesla P100. The test scenario comprises
1 x 10° macro-particles on a mesh of dimension 256 x 256 x 100. The discrete Poisson
equation on this regular grid is readily solved with an open boundary integrated Green’s
function approach, using the Fast Fourier Transform algorithm via Hockney’s trick of cyclic
domain extension [4]. The source files of PyPIC1ib can be found in the github repository®.

Fig. 2 shows the profile of the entire algorithm, which is encapsulated in the function
PyPIC _GPU.pic_solve within the PyPIC1lib library. The 4 relevant algorithmic steps
are

1. p2m in lines 712 to 714 with 1.7%,

2. Poisson solve in line 720 with 90.9%,

3. gradient in line 723 with 3.7% and

4. m2p in line 728 and 729 with 3.3% of the time spent.

This clearly reveals the Poisson solve step to be the bottleneck on modern GPU architectures
(here the NVIDIA P100, compared to Ref. [4] showing p2m to be the bottleneck for pre-
Maxwell architectures, cf. the discussion in section 3.1).

Fig. 3 then reveals that most of the time during the FFT open boundary Poisson solve
is spent on the Fourier transformations (convolution in frequency domain), namely a frac-
tion of 98.6% in the CUDA FFT library routines (cuFFT) in lines 168 to 170. These results
show a highly optimised implementation with regard to the embedding of a high perform-
ance language in a slow, interpreted top level language: the overhead from Python remains
marginal.

Shttps://github.com/PyCOMPLETE/PyPIC /tree/master/ GPU
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Figure 2: Line profiler output on the P100 GPU for PyPIClib’s pic_solve function

Timer unit: le-06 s

Total time: 0.052965 s
File: PyPIC/GPU/pypic.py
Function: pic_solve at line 675

Line # Hits Time Per Hit % Time Line Contents
675 def pic_solve(self, »mp_coords, xxkwargs):
676 ’’’Encapsulates the whole algorithm to determine the
677 fields of the particles on themselves.
678 The keyword argument charge=e is the charge per macro-particle.
679 Further keyword arguments are
680 mesh_indices=None, mesh_distances=None, mesh_weights=None
681
682 The optional keyword arguments lower_bounds=False and
683 upper_bounds=False trigger the use of sorted_particles_to_mesh
684 which assumes the particles to be sorted by the node ids of the
685 mesh. (see further info there.)
686 This results in particle deposition to be 3.5x quicker and
687 mesh to particle interpolation to be 0.25x quicker.
688 (Timing for le6 particles and a 64x64x32 mesh includes sorting.)
689
690 The optional keyword argument state=None gets rho, phi and
691 mesh_e_fields assigned as members if provided.
692
693 Return as many interpolated fields per particle as
694 dimensions in mp_coords are given.
695 e
696 1 2 2.0 0.0 charge = kwargs.pop ("charge", e)
697 1 1 1.0 0.0 if not self.optimize_meshing_memory:
698 kwargs ["mesh_indices"], kwargs["mesh_weights"] = \
699 self.get_meshing (kwargs, =xmp_coords
700
701 1 1 1.0 0.0 lower_bounds = kwargs.pop (' lower_bounds’, None
702 1 1 1.0 0.0 upper_bounds = kwargs.pop (' upper_bounds’, None
703
704 1 0 0.0 0.0 state = kwargs.pop (’state’, None)
705
706 1 1 1.0 0.0 if lower_bounds is not None and upper_bounds is not None:
707 mesh_charges = self.sorted_particles_to_mesh(
708 *mp_coords, charge=charge,
709 lower_bounds=lower_bounds, upper_bounds=upper_bounds
710 )
711 else: # particle arrays are not sorted by mesh node ids
712 1 1 1.0 0.0 mesh_charges = self.particles_to_mesh (
713 1 894 894.0 1.7 *mp_coords, charge=charge, *xkwargs
714 )
715 1 139 139.0 0.3 rho = mesh_charges / self.mesh.volume_elem
716 1 4 4.0 0.0 if getattr(self.poissonsolver, ’is_25D’, False)
717 rho *= self.mesh.dz
718 1 1 1.0 0.0 if state: state.rho = rho.copy()
719
720 1 48153 48153.0 90.9 phi = self.poisson_solve (rho
721 1 1 1.0 0.0 if state: state.phi = phi
722
723 1 1974 1974.0 3.7 mesh_e_fields = self.get_electric_fields (phi
724 1 5 5.0 0.0 self._context.synchronize()
725 1 1 1.0 0.0 if state: state.mesh_e_fields = mesh_e_fields
726
727 1 3 3.0 0.0 mesh_fields_and_mp_coords = zip(list (mesh_e_fields), list (mp_coords)
728 1 175 175.0 0.3 fields = self.field_to_particles (xmesh_fields_and_mp_coords, **kwargs
729 1 1607 1607.0 3.0 self._context.synchronize (
730 1 1 1.0 0.0 return fields



Table 6: Timing of Mesh to Particle Interpolation

hardware cores | time [ms]

NVIDIA GPU Tesla P100 | 3584 2
NVIDIA GPU Tesla C2075 | 448 17
CPU Intel Xeon E5 1 103

Figure 3: Line profiler output on the P100 GPU for the poisson_solve function of
PyPIClib’s 3D FFT solver

Timer unit: le-06 s

Total time: 0.048126 s
File: PyPIC/GPU/poisson_solver/FFT_solver.py
Function: poisson_solve at line 155

Line # Hits Time Per Hit % Time Line Contents
155 def poisson_solve (self, rho):
156 ’7’ Solve the poisson equation with the given charge distribution
157 Args:
158 rho: Charge distribution (same dimensions as mesh)
159 Returns:
160 Phi (same dimensions as rho)
161 e
162 1 114 114.0 0.2 rho = rho.astype (np.complex128)
163 1 6 6.0 0. self._cpyrho2tmp.set_src_device (rho.gpudata)

-
w
w
o
o
oo

164 self._cpytmp2rho.set_dst_device (rho.gpudata)
165 # set to 0 since it might be filled with the old potential

166 1 30 30.0 0.1 self.tmpspace.fill (0

167 1 20 20.0 0.0 self._cpyrho2tmp (

168 1 87 87.0 0.2 cu_fft.fft (self.tmpspace, self.tmpspace, plan=self.plan_forward
169 1 1647 1647.0 3.4 cu_fft.ifft (self.tmpspace x self.fgreentr, self.tmpspace,

170 1 45831 45831.0 95.2 plan=self.plan_backward

171 # store the result in the rho gpuarray to save space

172 1 18 18.0 0.0 self._cpytmp2rho (

173 # scale (cuFFT is unscaled)

174 1 292 292.0 0.6 phi = rho.real/ (2xxself.mesh.dimension * self.mesh.n_nodes

175 1 78 78.0 0.2 phi %= self.mesh.volume_elem/ (2% (self.mesh.dimension-1)*np.pi*epsilon_0)
176 1 0 0.0 0.0 return phi
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