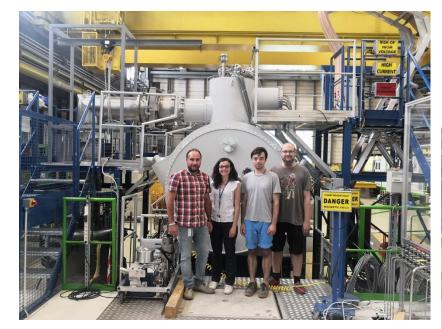
FAIR test station B180

Organization of the CERN/GSI Collaboration

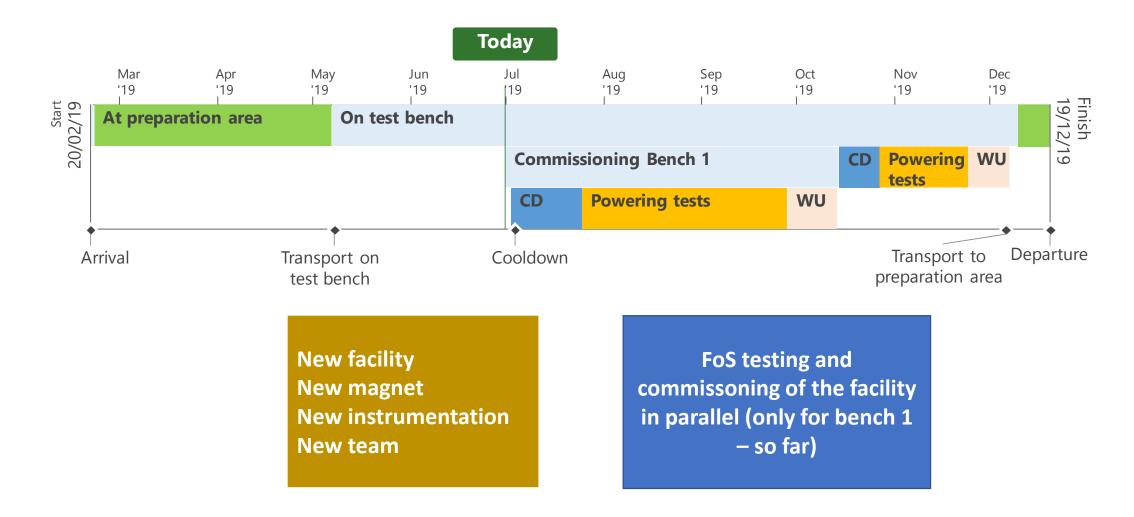

Status 03.07.2019

L. van den Boogaard, S. Russenschuck

Contents

A birds-eye view on

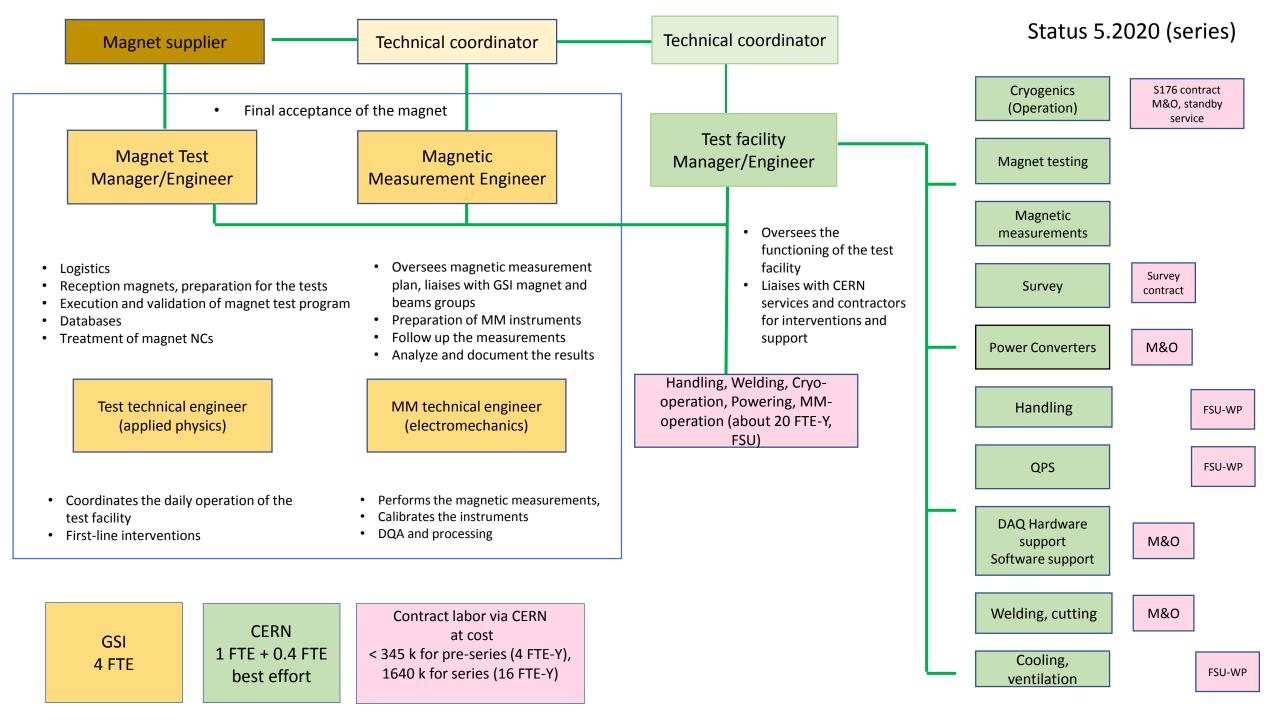
- Test plan status
- Organizational matters
- Resources



01.07.2019 S-FRS test station B180

Status (1)

01.07.2019 S-FRS test station B180


Status (2)

- Deployment of the GSI personnel (4 FTEs) was completed by beginning of February 2019.
- First short multiplet arrived in Feb 2019. Therefore no training on the SM18 test station.
- Non-conformities on magnet and installation, adaptations, additional tools and equipment needed.
- Commissioning of GSI Instrumentation Panel and Electrical Cabinet (hardware, DAQ, and control software) required before the cooldown can start.

Activities and Milestones (more detailed, so far)

Magnet		Resources (issues)	Fa	acility	Resources (issues)
1)	Transport	EN-HE-HH + ASG (CoG)	1)	Removal platforms	EN-HE-HH + FSU
2)	Unwrapping	FSU (Cherry picker, safety training)	2)	Platform adjustments	EN-HE-HH
3)	Feet installation and alignment	FSU + GSI@CERN (NC)	3)	Install brackets (for surv	vey) EN-SMM-ASG
4)	Installation of safety valve	FSU (NC)	4)	Piping for current leads	Contractor
5)	Jumper alignment	EN-MME-FW	5)	Cabling instrumentation	
6)	Jumper welding	EN-MME-FW (NC)		panel and electrical cab	inet GSI@CERN
7)	Insulation vacuum	Contractor	6)	HSE inspection	HSE-OHS-IB
8)	Cold mass survey	GSI survey	7)	QDS cable integrity	
9)	Removal transport rods	FSU + GSI@CERN (Info,	•	.	TE-MPE-EP
		cold-mass displacement)	8)	Commissioning facility	TE-MPE-MS/MSC-TF/
10)	Leak tests (Jumper, LHe vessel + IP)	Contractor	9)	Commissioning electr. cabinet and instrument	EPC-MPC GSI + . GSI@CERN
11)	Purging	TE-CRG-OP		panel	
12)	Electrical tests	TE-MSC-TF + GSI@CERN			stimated 0.3 FTE for FoS, ot including MM proper

 Transport and crane operation Installation of support posts Transport rods removal 	Handling	
Transport roas removal	Cryogenic operation	
 Supervision and maintenance of cryogenic installation 	Electrical/Powering Test	
Magnet connection to cryogenic interfaces	Welding	
Parameter configurationConfiguration setting for each magnetCommissioning of powering system	Power Converter	
Safety instructions for the facility operation	Safety	
Safety filesSafety inspections	Modelling/Integration	
 Configuration setting for each magnet Commissioning Interfacing with power converters and interlocks 	QPS	
Verify interlock system	Cryogenic control system	
System calibration and maintenance	Magnetic measurement support	
Installation of optical target on the magnet	Survey	
Magnet alignment at test benchMagnet fiducialization	Vacuum	

facility coordination Test

Test activitie S CO ordin nation

Cold mass mouvement survey Resource loaded

Test and measurement plan

Magnetic

Cryo-Instrumentation and DAQ software

Controls of current-

- planning
- **Electrical and** powering tests

measurements

lead cooling circuits

- Define test plan
- Interact with magnet producer
- Follow up of delivery
- Cabling and connection of instrumentation rack to the magnet
- HV tests
- DAQ
- RRR measurements
- Continuity testing
- Inductance/AC losses
- Sensor integrity
- · Commissioning of SSW and **Rotating Coil**
- Development of analysis software
- Magnetic measure axis/angle/main field
- Measure field quality
- Instrument calibration
- Cold mass survey
- Test and measurement data validation and dissimination
- Magnet approval

CERN staff, fellows Handling Serge Pelletier 100% COAS EN HE-HH (S. Pelletier) @ CERN Cryogenic operation Thierry Dupont TE-CRG-ML Resource loaded (G. Ferlin) planning Cryogenic eng. support G. Rolando Antonella Chiuchiolo TE-CRG-ME (A. Perin) SuperFRS project (Haik Simon, Test and Magnet suppliers and their contractors Electrical/Powering Test Maryline Charrondiere Test activities coordination (Kei Sugita) measurement plan TE-MSC-TF Magnets (Hans Mueller, Quench detection (Piotr Szwangruber) (M. Bajko) Russenschuck) Florian Greiner Welding Powr supplies Gilles Favre Electrical and **EN MME-FW** Test facility coordination (G. Favre) powering tests Giancarlo Golluccio **Power Converter** Hughes Thiesen, Emilien Coulot TE EPC-MPC (G. Le Godec) Magnetic Safety **Pawel Kosek** measurements Andre Henriques **HSE OHS-XP** Collaboration (S. (S. La Mendola) Modelling/Integration @ Da Antoine Kosmicki **EN-ACE-INT** Eun Jung Cho (Y. Muttoni) Martin Winkler Ina Pschorn Cold mass QPS Jens Steckert, Daniel Calcoen TE MPE-EP mouvement survey Vasileios Velonas (R. Denz) Cryogenic control system Cryo-**Thomas Barbe Christine Betz** TE CRG-CE Instrumentation (M. Pezzetti) (rack) and control Magnetic measurement **Guy Deferne** support (TE-MSC-MM) Current-lead (S. Russenschuck) instrumentation Survey (Fidualization) and control Patrick Bestmann **EN-SMM-ASG** (D. Missiaen) Vacuum Jaime Perez Espinos TE-VSC-DLM **10% COAS 10% COAS** (C. Garion)

Points needing attention

- According to the addendum: CERN provides and operates the test station, GSI is responsible for all the testing. But there are some «gray zones», for example the cryo-instrumentation (hardware, DAQ, and controls), fixing of non-conformities on the magnets, safety coordination (co-activities, in particular when magnets are on three benches), coordination of FSU and contractors.
- So far, most cost-efficient operation, no people hired, no additional FSU, but this will change (experience with FoS multiplets and dipoles needed to establish a resource loaded planning).
- Non-negligible lead time for registration and (safety) training (COAS, Proj).
 Magnet suppliers and their contractors need work-orders to be able to intervene on the magnets.