Magnetic field and ion-optical simulations for the Super-FRS

TECHNISCHE UNIVERSITÄT DARMSTADT

E. Kazantseva

Super-FRS commissioning and operation from ion-optics point of view: issues

- Centering beam for arbitrary Bp in range 2-20 Tm: L_{eff} changes non-linearly in all magnets! (up to 1.1% in dipoles, up to 5% in quads)
- 7 dipole stages, about 100 multipoles and 10 steerers can (and must) be tuned to achieve optimal resolution/transmission for any given experiment/rigidity.
- About 20 different types of elements are involved.
- One ramping period 4 min for dipoles, 2 min for quads.
- Central rigidity will be changed many times per day:
 - Manual tuning is very time consuming.

Accurate and fast ion-optical model considering realistic magnetic fields from measurements or accurate 3D simulations is required for efficient operation of Super-FRS

TECHNISCHE UNIVERSITÄT

DARMSTADT

Quad type 3: 3D MS simulation by Dr. E.J. Cho

Step by step procedure to extract high order Taylor transfer maps

- 1. Measure/simulate the B-field
- 2. Set the reference trajectory (dipoles)
- 3. Obtain B-field as smooth functions of X, Y,Z,I
- 4. Generate transfer maps:
 - a) Integral harmonics + Fringe Fields (FF):

+ fast

0 achieved accuracy $\approx 2\%$

- don't really work for the SFRS dipoles with measured field

b) Numerical integration of ODEs of motion for reference particle in differential algebraic (DA*) framework:

+ very accurate (relative error down to 10⁻⁷ is possible)

0 in case of measurements requires Hall probing of (B_x, B_y, B_z)

- rather complex method

*TPSA + operations of derivation and antiderivation

Example: NC dipole FEM simulations

- CST EMS was used
- Accurate geometry
- Measured virgin curve:
 - No remanence in

simulations!!!

Example: NC dipole Benchmarking of simulations with the measurements

Excitation curve

0.8380 1.6 ∫*B(I*, 0, 0, *Z*)*dZ*, Tm 4.0 320 A 640 A a) a) a) 0.8374 3.2 1.2 2.4 0.8368 ⊢ ⊢ 0.8 320 A B ഫ് 1.6 0.8362 0.4 simulations 0.8 40 A measurements 0.8356 Simulations 0.0 Measurements ---- Simulations --- Measurements 0.8350 -16 -24 -8 0 8 16 ∫B(I, 0, 0, Z)dZ]/I, 10⁻³ Tm/A -160-80 80 6.30 b) 0 160 1.6075 b) 0.5 640 A Max. difference % b) 6.15 1.6050 $(B_{s}-B_{m})/B_{m}(0,0,0),$ ≈0.8% 0.0 ⊢ 1.6025 Ø 6.00 0.5 5.85 simulations 1.6000 -1.0measurements 40 A Simulations 1.5975 5.70 320 A Measurements 140 240 340 440 540 640 740 40 -1.5 640 A *I*, A -16-8 16 -24 0 8 *X*, cm -160-80 0 80 160 Z, cm "Missing" remanence in FEM model

= •

 B_v along X axis

 $B_{\rm Y}$ along Z axis

Criteria to set a reference trajectory in a dipole

 Deflecting angle in the dipole must be fixed for all rigidities from 2 to 20 Tm

$$\theta = \int\limits_{S} \frac{B_y(I)}{B\rho} ds$$

► Need to deduce* $I_{opt}(B\rho)$: $\theta(I_{opt})$ =const

*have to measure the working function along the reference path

TECHNISCHE UNIVERSITÄT

DARMSTADT

Obtaining accurate *B(X,Y,Z,I)* polynomials

along rererence path

- Using superposition principle and least squares fit, B_{X,Y,Z}(I) can be decomposed in
 - $B_{\alpha}(I) \approx b_{0}^{\alpha} + b_{1}^{\alpha}(I I_{0}) + b_{2}^{\alpha}(I I_{0})^{2} + \dots + b_{n}^{\alpha}(I I_{0})^{n}$ where $\alpha \in \{X, Y, Z\}$
- DA SIHM can be applied to b_i^{α} .

- Solution approach (is not needed for quads or sextupoles):
 - SIHM calculation of low (2nd) order polynomials of b^α_i(X,Z) in 2D array of points
 - least squares fit of higher orders polynomials in midplane.
 - DA fixed point theorem reconstruction of harmonic off-plane field.

Surface Integration Helmholtz Method (SIHM)

S. Manikonda, High Order Finite Element Methods to Compute Taylor Transfer Maps, PhD Dissertation, 2006; M. Berz, Modern Map Methods in Particle Beam Physics, 1999

TECHNISCHE UNIVERSITÄT

DARMSTADT

Robustness of SIHM: analytic example

 Biot-Savart magnetic field from a current wire configuration.

Beam physics ODEs

- $\vec{z}(s) = \vec{f}(s, \vec{z}(s_0)) = (x, a, y, b, l, \delta_K)|_s$
- ODEs for flat reference trajectory and conserved energy:

$$h = B
ho/B_y(x,s)$$
 – curvature, $\eta = K/E_0 = \gamma - 1$

Bp can be added as an extra parameter into the variables, dependent on it: η , h, p_0 , p_s , $B_{x,y,s}$ to obtain *Bp*-dependent transfer maps

DA Transfer Maps

X	а	у	b	Order	Exponents			
$\partial x_{f} / \partial x_{i}$	$\partial a_{f} / \partial x_{i}$	$\partial y_{f} / \partial x_{i}$	$\partial b_{f} / \partial x_{i}$	1	1	0	0	0
∂x _f /∂a _i	∂a _f /∂a _i	∂y _f /∂a _i	∂b _f /∂a _i	1	0	1	0	0
$2\partial^2 x_f / \partial x_i^2$	$2\partial^2 a_f / \partial x_i^2$	$2\partial^2 y_f / \partial x_i^2$	$2\partial^2 b_f / \partial x_i^2$	2	2	0	0	0
j!k!I!m! ∂ ^{j+k+l+m} x _f / ∂x _i i∂a _i k∂y _i l∂b _i ^m	j!k!I!m! ∂ ^{j+k+I+m} a _f / ∂x _i ^j ∂a _i ^k ∂y _i ∂b _i ^m	j!k!I!m! ∂ ^{j+k+l+ml} y _f / ∂x _i i∂a _i ^k ∂y _i l∂b _i ^m	j!k!I!m! ∂ ^{j+k+I+m} b _f / ∂x _i ^j ∂a _i ^k ∂y _i ∂b _i ^m	j+k+l+m	j	k	I	m

Table 1 Example of the Taylor Transfer Map Structure for 4 variables: x, a, y, b

Super-FRS preseparator optics with realistic dipole transfer maps

FPF4

FPF3

FPF1

FPF1OT13

Ouadrupole

Sextupole

Octupole

Bo. Tm

6 8 10

PF10T11

0.4 %

0.0

-0.4

50

-50

20

-20

2

Rel. change,

%

change,

Rel.

%

Rel. change,

FPF2

FPF3KO1

FPF2KO11

- One $B\rho$ - ΔE - $B\rho$ stage
- 3 NC and 3 SC dipoles
- Standard COSY transfer maps were used for multiples
- Optics is optimized for design *Bp* range

In optimal case the multipoles "compensate" the dipole inhomogeneity

Maps of different orders: xa at FPF4

04. July 2019 | TU Darmstadt | Institut für Teilchenbeschleunigung und Elektromagnetische Felder | Erika Kazantseva | 14

Spectrometer mode example

- Dispersion of many stages added
- 1st stage of Super-FRS was repeated 4 times to imitate the effect of the whole Super-FRS
- Separation of monoenergetic slices with Δp/p=1.2×10⁻³.
- If the optics is optimized for one Bp (16Tm, a)), light changes are visible
- If the optics is optimized for each Bp, the difference can be well compensated.

Outlook

- Testing the SIHM approach with measured magnetic field (in collaboration with CERN)
- Taking the remanence into account (modelling in ONELAB or FEniCS).
 Steps:
 - 1. Measure the hysteresis properties, set up a model (Preisach model)
 - 2. Using FEM solve $\nabla \times (\nu \nabla \times \vec{A}) = \vec{J}$ with virgin curve at max. current => hysteresis turning points for each discrete element
 - 3. Finding $\vec{B}_{\rm rem}$ using Preisach model obtained with measurements data
 - 4. Using FEM solve $\nabla \times (\nu \nabla \times \vec{A}) = \vec{J} \nabla \times (\nu \vec{B}_{rem})$
- Computing the transfer maps for all types of the Super-FRS magnets
- Studying fringe field overlapping effects

THANK YOU FOR THE ATTENTION!

Correction by tuning available multipoles

- Maximum correction order = 3
 - 3rd order transfer maps with least squares fitted integral multipoles can be used for fitting optics
 - Obtained optimal settings can be used in higher order calculations

Horizontal phase space at FPF4 for initial Gaussian distribution with FWHM equal to design acceptance

Analytical test model of ironless inhomogeneous dipole magnet

 Analytical magnetic field from Biot-Savart law:

$$\mathbf{B}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int_C \frac{Id\mathbf{l} \times \mathbf{r'}}{|\mathbf{r'}|^3}$$

Straight wires configuration:

- Inhomogeneous field
- Symmetry like in usual accelerator dipole magnet: In Y=0, B_x=B_z=0

Helmholtz theorem in 3D case

 \Rightarrow

Helmholtz theorem in 3D case

<u>Theorem:</u> A general continuous three-vector field defined in a Euclidean 3-space, that along with its first derivatives vanishes sufficiently rapidly at infinity, may be uniquely represented as a sum of an irrotational part and a solenoidal part.

$$\begin{split} \vec{B}(\vec{r}) &= -\vec{\nabla}\phi(\vec{r}) + \vec{\nabla} \times \vec{A}(\vec{r}), \text{ where } & \text{0 for magnetic field} \\ \varphi(\vec{r}) &= \frac{1}{4\pi} \int_{\partial\Omega} \frac{\vec{n}(\vec{r}_s) \cdot \vec{B}(\vec{r}_s)}{|\vec{r} - \vec{r}_s|} ds - \frac{1}{4\pi} \int_{\Omega} \frac{\vec{\nabla} \cdot \vec{B}(\vec{r}_v)}{|\vec{r} - \vec{r}_v|} dV, \text{ and } \\ \vec{A}(\vec{r}) &= -\frac{1}{4\pi} \int_{\partial\Omega} \frac{\vec{n}(\vec{r}_s) \times \vec{B}(\vec{r}_s)}{|\vec{r} - \vec{r}_s|} ds + \frac{1}{4\pi} \int_{\Omega} \frac{\vec{\nabla} \times \vec{B}(\vec{r}_v)}{|\vec{r} - \vec{r}_s|} dV. \end{split}$$

Fixing R_o versus fixing θ_o

Actua

angle

deflecting

- Effective length $L_{\text{eff}}(I) := \frac{1}{B_0(I)} \int_S B_y(I) ds$ is equal $R_0 \theta$ if $B\rho = B_0 R_0$
- θ drops with L_{eff}
- If $B\rho \neq B_0 R_0$ then L_{eff} is not informative
- It is possible to fix θ_0 by varying $B\rho(I)$ or I
- Using $B_{\text{eff}} = B\rho/R_0$ one gets L_{eff}

$$L_{eq}(I) := \frac{1}{B_{eff}(I)} \int_{S} B_y(I) ds = R_0 \theta(I)$$

• In optimal case $L_{eq} = R_0 \theta_0$

Fixing R_o versus fixing θ_o

20