

Status of the SPL cryo-module development (report from WG3)

V.Parma, TE-MSC (with contributions from WG3 members)

Outline

- Introduction
- New orientation and work organisation
- Layout studies and machine sectorisation (vacuum+cryogenics)
- Recent advances:
 - Supporting schemes
 - Cryogenics
- Summary

Working group (WG3)

System/Activity	Responsible/member	Lab
Machine architecture	F.Gerigk	CERN
WG3 coordination	V.Parma	CERN
Cryo-module design & Integration CERN	V.Parma. Team: N.Bourcey, P.Coelho, O.Capatina, D.Caparros, Th.Renaglia, A.Vande Craen	CERN
Cryo-module design & Integration CNRS	P.Duthil (P.Duchesne) + CNRS Team	CNRS/IN2P3-Orsay
Cryostat assembly tooling	P.Duthil (P.Duchesne)	CNRS/IN2P3-Orsay
WG 2 activity (RF cavities/He vessel/tuner, RF coupler)	W.Weingarten/S.Chel/O.Capatina/ E.Montesinos	CERN, CEA-Saclay
Vacuum systems	S.Calatroni	CERN
Cryogenics	U.Wagner	CERN
Survey and alignment	D.Missiaen	CERN

Layout injector complex

The SPL study at CERN

- R&D study for a 5 GeV and multi MW high power beam, the HP-SPL
- Major interest for non-LHC physics: ISOLDEII/EURISOL/Fixed Target/Neutrino Factory

HP-SPL beam characteristics

The SPL study: new orientation

New objective of the SPL study:

Up to 2013:

Focus on R&D for key technologies for the high intensity proton source (HP SPL)

In particular:

- Development, manufacture and test of high-gradient β=1, 5 cellules ,704 MHz cavities
- Development, manufacture and test of RF couplers
- Testing of a string of 4 β =1 cavities in machine-type configuration:
 - Housed in helium vessels
 - Equipped with tuners
 - Powered by machine-type RF coupler

→ Need for a **short cryomodule** for testing purposes

Short cryo-module: Goal & Motivation

Goal:

• Design and construct a $\frac{1}{2}$ -lenght cryo-module for 4 β =1 cavities

Motivation:

- Test-bench for RF testing on a multi-cavity assembly driven by a single or multiple RF source(s)
- Enable RF testing of cavities in horizontal position, housed in their helium tanks, tuned, and powered by machine-type RF couplers
- Validate by testing critical components like RF couplers, tuners, HOM couplers in their real operating environment

Cryomodule-related goals:

- Learning of the critical assembly phases:
 - preparation of a long string of cavities in clean room
 - alignment/assembly in the cryostat;
- Proof-of-concept of the innovative supporting of cavities via the RF couplers
- Explore cryogenic operation issues

Planned supplies for β=1 short cryo-module

Institute	Responsible person	Description of contribution
CEA – Saclay (F)	S. Chel (G.Devanz)	 Design & construction of 1 β=1 cavities (EuCARD task 10.2.2) Design & construction of 5 helium vessels for β=1 cavities (French in-kind contribution) Supply of 8 tuners (French in-kind contribution)
CNRS - IPN – Orsay (F)	P. Duthil (P.Duchesne)	 Design and construction of prototype cryomodule cryostat (French in-kind contribution) Design & construction of cryostat assembly tools (French in- kind contribution)
Stony Brook/BNL/AES team	I.Ben-zvi	 (Under DOE grant) 1. Designing, building and testing of 1 β=1 SPL cavity.
CERN	O.Capatina	 8 β=1 cavities 4 He tanks in titanium 1 He tank in st.steel
CERN	E.Montesinos	1. 8 +1 RF couplers (testing in CEA, French in-kind contribution)

In **blue**, recent changes

Relevant events since last collaboration meeting

- Workshop on cryogenic and vacuum sectorization of the SPL
 - CERN, 9-10 Nov.2009, <u>http://indico.cern.ch/conferenceDisplay.py?confld=68499</u>
 - 22 participants from CEA, IPN Orsay, FNAL, ORNL, JLAB, SLAC, DESY, ESS, and CERN
- Review of SPL RF power couplers
 - CERN, 16-17 March 2010, <u>http://indico.cern.ch/conferenceTimeTable.py?confld=86123#20100316</u>
 - 24 participants from CEA, IPN Orsay, BNL, FNAL, ANL, JLAB, DESY, Lancaster Univ., Uppsala Univ., and CERN
- Intermediate meetings of the WG3:
 - minutes on CERN EDMS
 - Cryomodule documentation on <u>https://twiki.cern.ch/twiki/bin/view/SPL/CryoModules</u>

SPL parameters

(https://twiki.cern.ch/twiki/bin/view/SPL/SPLparameterList, by F.Gerigk)

Parameter	Unit	HP-SPL	HP-SPL	LP-SPL
		low-current	high-current	
Energy	[GeV]	5	5	4
Beam power	[MW]	4	4	0.192
Repetition rate	[Hz]	50	50	2
Average pulse current	[mA]			0-20
Peak pulse current	[mA]	32	64	32
Source current	[mA]	40	80	40
Chopping ratio	[%]	62	62	62
Beam pulse length	[ms]			0.9
filling time constant tau _l (b=0.65/1.0)	[ms]	0.54/0.55	0.27/0.27	0.54/0.55
actual cavity filling time: ln(4) x tau _l	[ms]	0.75/0.76	0.37/0.38	0.75/0.76
RF pulse length (filling time + flat top)	[ms]	1.55/1.56	0.78/0.78	1.65/1.66
Protons per pulse for PS2	[10 ¹⁴]	1.0	1.0	1.13
Beam duty cycle	[%]	4	2	0.18
RF duty cycle	[%]	7.8	3.9	0.33
Cryogenics duty cycle	[%]			0.35

Cryogenic-specific parameters

(https://twiki.cern.ch/twiki/bin/view/SPL/SPLparameterList, by F.Gerigk)

Parameter	Units	Beta = 0.65	Beta = 1			
		nominal/ultimate	nominal/ultimate			
Cavity bath temperature	[K]	2.0	2.0			
Beam loss	[W/m]	1.0	1.0			
Static loss along cryo-modules at 2 K	[W/m]	TBD	TBD			
Static loss at 5-280 K	[W/m]	TBD	TBD			
Accelerating gradient	[MV/m]	19.3	25			
Quality factor (x10^9)		6/3	10/5			
R/Q value		290	570			
Cryogenic duty cycle	[%]	4.09/8.17	4.11/8.22			
Coupler loss at 2.0 K	[W]	<0.2/0.2	<0.2/0.2			
HOM loss at 2.0 K in cavity	[W]	<1/<3	<1/<3			
HOM coupler loss at 2.0 K (per coupler)		<0.2 /0.2	<0.2/0.2			
HOM & Coupler loss 5-280 K	[g/s]	0.05	0.05			
Tunnel slope	[%]	1.7%	1.7%			
Magnet operating temperature	[K]	ambient	ambient			
No of cavities		60	200			
No of cryostats		20	25			
Cavities per cryostat		3	8			
Dynamic heat load p. cavity	[W]	4.2/13.4	5.1/16.2			

Nominal: 40 mA/0.4 ms beam pulse ; Ultimate: 20 mA/0.8 ms beam pulse.

CRYOGENICS AND VACUUM SECTORISATION

Outcome of workshop on cryogenic and vacuum sectorisations of the SPL (November 9-10, 2009)

CERN

Longitudinal mechanical layouts

«Continuous» vs. «fully segmented» cryostat SPL layouts Continuous cryostat "Compact" version (gain on interconnections):

→ 5 Gev version (HP): SPL length = 485 m (550 m max available space)

"Warm quadrupole" version (with separate cryoline):

→ 5 Gev version (HP): SPL length = 535 m

(550 m max available space)

Main issues

- Machine availability:
 - "work-horse" in the injection chain
- Reliability of built-in components and operational risks
 - Typical faults expected on: cavities, couplers, tuners...
 - Operation with degraded performance (cavities, optics, leaks...)
- Maintainability:
 - Warm-up/cool-down .Time and reliability. Need for partial or complete warm-up of strings to replace built-in components or even one cryo-module
 - Accessability of components for regular maintenance or repair
- Design complexity of compared solutions
- Operational complexity (e.g.cryogenics with 1.7% slope)
- Installation and commissioning
- Safety. Coping with incidents (MCI): Loss of beam and/or insulation vacuum (helium and air leaks):
- Cost differences between options

"continuous" cryostat

- "Long" and "continuous" string of cavities in common cryostat
- Cold beam tube
- "straight" cryogenic lines in main cryostat
- common insulation vacuum (between vacuum barriers, if any present)

String of cryo-modules between TSM

- **Technical Service Module (TSM)**
- Cold-Warm Transition (CWT)
- Insulation vacuum barrier
- Warm beam vacuum gate valve

"segmented" cryostat

- Cryostat is "segmented": strings of (or single) cryo-modules, 2 CWT each
- Warm beam zones (where warm quads can be)
- Cryogenic Distributio Line (CDL) needed
- Individual insulation vacuum on every string of cryo-module (Vacuum Barriers, w.r.t. CDL)

Cryogenic Distribution Line (CDL)

String of (or single) cryo-modules

Technical Service Module (TSM)

Cold-Warm Transition (CWT)

Insulation vacuum barrier

Warm beam vacuum gate valve

Conclusions on sectorisation

Availability:

- Reliability/Maintainability. Components with technical risk:
 - RF Coupler, single window. No in-situ repair possible
 - Cavity/tuner, reduced performance. No in-situ repair possible
 - Beam/cavity vacuum leaks. No in-situ repair possible

calls for quick replacement of complete cryo-module (spares needed)

- <u>Safety: coping with incidents</u>: accidental loss of beam/cavity vacuum:
 - Cold valves not available (XFEL is considering their development)

→Adopt warm, interlocked valves (not necessarily very fast, XFEL experience)

"Segmented" layout with CDL has clear advantages in these respects

Additional advantages:

- Magnets can be warm: classical "off-the shelf", easy alignment/maintainability/upgrade
- and cryo-module internal positioning requirements can ne relaxed (by a factor of 3)

Drawbacks:

- Less compact layout (~+10% extra lenght)
- More equipment (CDL, CWT, instrumentation...):
 - Capital cost
 - More complexity = less reliability?
- Higher static heat loads (but dynamic loads dominate!)

Cryogenic and vacuum sectoriz.of the SPL

Continuous cryostat "Compact" version (gain on interconnections):

→ 5 Gev version (HP): SPL length = 485 m

Segmented layout (warm quads, with separate cryoline):

→ 5 Gev version (HP): SPL length = 535 m

β=0.65 cryo-module

$\beta = 1$ cryo-module

Coupler position: top or bottom...?

Pros	Contras		Pros	Contras
Easier mounting of waveguides	Interferes with bi-phase tube → move sideways Waveguides/coupler more exposed to personnel/handling (damage, breaking window?)		Centered bi-phase tube→ symmetry	Space needs for waveguides under cryostat
Easier access (needed?)			Waveguides/coupler protected	If coupler not a support (bellows)→ support on top, i.e. centered tube not possible

No strong decision-making argument...

HOM coupler

- Provisions made to house an HOM coupler (resonator type)
- Port foreseen opposite to RF coupler port
- Superconducting, cooled at 2K
- The HOM coupler needs to be on top
- ...so the RF coupler is at the bottom

HOM port

RF coupler port

Cavity Supporting System

Transversal position specification

BUDGET OF TOLERANCE							
Step	Sub-step	Tolerances (3σ)	Total envelopes				
	Cavity and He vessel assembly	± 0.1 mm	Positioning of the cavity w.r.t. beam axis				
Cryo-module assembly	Supporting system assembly	± 0.2 mm					
	Vacuum vessel construction	± 0.2 mm	± 0.5 mm				
Transport and handling (± 0.5 g any direction)	N.A.	± 0.2 mm ± 0.5 mm ± 0.1 mm					
Testing/operation	Vacuum pumping		Stability of the cavity				
	Cool-down		w.r.t. beam axis				
	RF tests	± 0.2 mm	± 0.3 mm				
	Warm-up						
	Thermal cycles						

Comparing supporting solutions

A) Coupler supporting scheme

B) "standard" supporting scheme

Pros	Contras	Pros	Contras		
Design simplicity: cost effectiveness	Vacuum vessel: - Stiffness (thickness, stiffeners) - Dim. stability - Precision machining	Better mechanical isolation of cavities from external perturbations: dim. changes (thermal, weld relieving), vibrations	Design complexity and cost		
- Cost		Vacuum vessel simplicity:	Central support needed (?)		
Single cavity adjustment at assy	Positioning stability (thermal, weld relieving)	-Reduced machining precision - reduced thickness			
	Inter-cavity guiding		Complex cavity adjustment at assy		

A) Chosen as baseline ("simple is nice")

Need inter-cavity support structure?

ÉRI

P.Coelho Moreira de Azevedo

Vertical displacement in *m* (body deformation amplified 20 times):

The cavities are not part of the model. The loads are the distributed weight of the represented components, tuners and cavities.

Deflections still excessively high! → goal is 0.1mm (cavity self-weight straigtness),still work to do!

The link between the cavities is established as shown:

P.Coelho Moreira de Azevedo

Assembly possibilities...

Either...

- Single-window RF coupler \rightarrow needs assembly to cavities in clean room
- Defines minimum diameter of "pipeline" type vessel:
 - Lenght of double-walled tube
 - Integration of thermal shield

Or...

- Simple in the cross section... But...
- Non trivial design of end-caps
- Leak-tightness: seal? welded?

(Th.Renaglia)

(O.Capatina, Th.Renaglia)

Helium gas cooling the double wall

From 8 to 4 cavities...How??

... just remove 4 cavities!

Coping with the "ghost" cavities...

- Assume they still exist
- Design the systems as if they where there:
 - Cryogenics (p,T, mass flows)
 - Distribution lines (ID, pres.drops)

Heat Loads

Heat loads @ 2K (He bath)	b=0.65	b=1				
	nominal/ultimate					
beam loss	1 W	1 W				
static losses	<1 W (tbc)	<1 W (tbc)				
accelerating field	19.3 MV/m	25 MV/m				
quality factor	6/3 x 10 ⁹	10/5 x 10 ⁹				
cryo duty cycle	4.09%/8.17%	4.11%/8.22%				
power coupler loss at 2 K	<0.2/<0.2 W	<0.2/<0.2 W				
HOM loss in cavity at 2 K	<1/<3 W	<1/<3 W				
HOM coupler loss at 2 K (per coupl.)	<0.2/<0.2 W	<0.2/<0.2 W				
dynamic heat load per cavity	4.2/13.4 W	5.1/16.2 W				
Total @ 2 K	7.6/18.8 W	8.5/21.6 W				
+15% margin (for testing)	8.7/21.6 W	9.8/25 W				

For 8 beta=1 cavity cryomodule: 8x25=200W, equivalent to 10 g/s helium flow

Pipe sizes and operating conditions (preliminary)

Line	Description	Pipe Size (ID,mm)	Normal operating pressure [MPa]	Normal operating temperature [T]	Cool- down/w arm-up pressure [MPa]	Cool- down/warm- up temperature [K]	T range [K]	Maximum operating pressure [MPa]	Design pressure [MPa]	Test pressure [MPa]	Comment
L	Cavity helium enclosure	400	0.0031	2	0.13 @ 293K 0.2 @ 2K	293-2	2-293	0.13 @ 293K 0.2 @ 2K			
x	Bi-phase pipe	100	0.0031	2	0.13 @ 293K 0.2 @ 2K	293-2	2-293	0.13 @ 293K 0.2 @ 2K			
Y	Cavity top connection	80	0.0031	2	0.13 @ 293K 0.2 @ 2K	293-2	2-293	0.13 @ 293K 0.2 @ 2K			
XB	Pumping line	100	0.0031	2	0.13 @ 293K 0.2 @ 2K	293-2	2-293	0.13 @ 293K 0.2 @ 2K			
E	Thermal shield supply	40 (TBD)	2.0	50-75	2.0	293-50	50-293	2.0	2.0		Heat intercept
E'	Thermal shield return	15 (TBD)	2.0	50-75	2.0	293-50	50-293				Return only
w	Cryostat vacuum vessel	1000 (TBD)	vacuum	293	vacuum	293	237-293	O.P. 0.1	I.P. 0.15	N.A.	
C1	Cavity bottom filling	15	0.1	4.5	0.1	293-4.5	4.5-293				Liquid supply
C2	Coupler	15	0.1	4.5-293	0.1	293-4.5	4.5-293				Gaseous supply
C3	Cavity top supply	15	0.1	2	0.1	293-4.5	2-293				Liquid supply

Short cryomodule: layout sketch

1.7% Slope (adjustable -2% to +2%)

Lines X and Y

Master Schedule

Start of assembly at CERN

Summary

- SPL cryomodule studies are now concentrated on a 4 β =1 cavity short cryomodule aimed at testing the cavities in machine-like configuration
- The short cryomodule is designed as a shortened machine unit
- The short cryomodule will also allow exploring important design issues for machine cryomodules:
 - Innovative supporting system
 - Assembly principles
 - Cryogenic operating schemes
 - ...
- Position of the coupler at the bottom is now settled
- The cryogenic scheme is being elaborated
- As a consequence piping sizes and pressures are being defined
- A technical specification for the cryomodule is in preparation and possibly ready by September next
- A preliminary design review will take place by the end of 2010

Thank you for your attention!

Spare slides

Possible cryogenic feeding: Cryogenic Distribution Line

Possible supporting schemes

"standard" supporting scheme

Two-support preferrable \rightarrow isostatic (=well defined forces on supports)

...but is cavity straightness enough?? If not...

- RF coupler (with bellows)
- Invar longitudinal positioner
- Inertia beam
- Fixed support
- Sliding support
 - External supports (jacks)

Possible supporting schemes

"standard" supporting scheme

...add 3rd support \rightarrow becomes hyperstatic (= forces depend on mech. coupling vessel/inertia beam)

RF coupler (with bellows)

- Invar longitudinal positioner
- Inertia beam
- Fixed support
- Sliding support
 - External supports (jacks)

"standard" supporting

To limit self-weight sag below **0.2 mm**, requires an inertia beam equivalent to a 10-**mm thick ~700-mm diam. tube** (almost vac.vessel size)

→ A 3rd central support is mandatory

Possible supporting schemes

Alternative: coupler supporting scheme

...the coupler is also a supporting/aligning element

RF coupler + longitudinal positioner + vertical support

Intercavity support structure

External supports (jacks)