

Mechanical design considerations for SPL b=1 cavities

O. Capatina, G. Arnau, S. Atieh, D. Maciocha,T. Renaglia, W. Weingarten (CERN)+ discussions and contributions from CEA andCNRS colleagues

Introduction

 SPL beta = 1 cavity + helium tank + tuner + main coupler + bellow to next cavity

β=1 Cavity mechanical considerations

- Ideal shape / dimensions
- From ideal to real
- Mechanical behaviour for real dimensions
 - Static (or quasi-static)
 - Natural vibration modes
 - Bucking
- Status for cavity manufacturing
- Conclusions

Ideal shape / dimensions

lrfu

saclay

Mechanical parameters of the cavity

	SPL	HIPPI
Nominal wall thickness [mm]	3	4
Cavity stiffness Kcav [kN/mm]	3.84	2.25
Tuning sensitivity $\Delta f/\Delta z$ [kHz/mm]	164	295
K_L with fixed ends $[Hz/(MV/m)^2]$	-0.55	-2.7
K_L with free ends $[Hz/(MV/m)^2]$	-5	-20.3
Pressure sensitivity K_P [Hz/mbar] (fixed ends)	1.2	

The cavity will be equipped with a Saclay 4 tuner. The stiffness of the HIPPI - Saclay 4 tuner has been measured : $K_{\rm ext}$ 35 kN/mm

The SPL cavity equipped with this tuner would present a detuning coefficient $|K_1| = 1 \text{ Hz/(MV/m})^2 \approx |K_1| \text{ estimated for Tesla}$

- Manufacturing technology chosen:
 - Half cells to be EB welded
 - Choice for Spinning based on:
 - Half cells dimension
 - Number of cavities to be manufactured
- Process main steps (based on DESY)

Task

Spinnnig of half-cells

Machining for iris and stiffening rings welding preparation

RF measurement of half-cell frequency

Ultrasonic cleaning; Etching (20 μm)

 $3 \mu m$ chemical cleaning if storage time > 8h after previous step

EB welding of the iris from inside

EB welding of stiffening rings

DESY 1.3 GHz dumb-bell

Process main steps

Task

Frequency measurement of dumb-bell

Machining of both equator ends / evaluation of frequency

Ultrasonic cleaning; Etching 20 µm

Anodization of dumb-bell and inspection

Grinding if needed + 20 µm etching, rinsed, dried, anodized again

3 µm chemical cleaning

EB welding from outside of all equators (intermediate 3µm etching)

EP 150 microns

UHV annealing at 800°C

Field flatness measurement

flash BCP 10 microns or final EP 30 microns

alcohol rinsing, drying in class 10

UHV baking at 120°

- First manufacturing tests results
 - Spinning test of half cell bulk Niobium
 - Starting thickness 3 mm & 4 mm
 - Loss in thickness ≈ 0.6 mm

- Optimised start thickness:
 - For cells Nb sheets 3.6 mm
 - For extremities 3.2 mm

- Spinning test of half cell bulk Copper
 - Dimensions control on-going

- Mechanical calculations performed with non uniform thickness (representative for manufacturing tests results)
- Static (quasi-static)
 - Maximum pressure (external)

At 300 K: 1.5 bars

At 2K: 2 bars

- Sensibility to pressure fluctuations
- Lorentz detuning
- Deformation for tuning
- Handling configurations

External pressure of 2 bars – fix-fix boundary condition

• Sensibility to pressure fluctuations => one order of magnitude lower that the frequency bandwidth

External pressure of 2 bars – fix-sliding boundary condition

Deformation for tuning of 1mm longitudinal

External pressure (external) of 2 bars +
1mm deformation for tuning

Maximum stress (MPa) for niobium for different static load cases

	Calculated stress						Allowable stress	
	2 bars; free extrem	2 bars; fixed extrem	2 bars + 1mm (traction)	2 bars – 1mm (compress)	0 bars + 1mm	At 300K	At 2K	
Non uniform based on manufacturing results	~35 MPa	~25 MPa	~50 MPa	~35 MPa	~30 MPa	50 Mpa	400 Mpa	

 Cavity under own weight – horizontal simply supported: 0.15 mm maximum deflection

 Cavity under own weight – vertical fixed at one end: maximum deformation 0.07 mm

- Dynamic (natural frequencies):
 - 1st mode at ~50 Hz (transverse)

- Dynamic (natural frequencies):
 - 2nd mode at ~130 Hz (transverse)

- Dynamic (natural frequencies):
 - 3nd mode at ~140 Hz (longitudinal)

 Bucking under external pressure for fix-fix boundary conditions: security factor 20

 Bucking under external pressure for fix-sliding boundary conditions: security factor 12

Status for cavities manufacturing (at CERN)

- 2 (3 TBC) copper cavities to be manufactured by end 2010
- Niobium RRR=300 (cavity) and RRR=40 (stiffening rings)
 - Specification defined
 - Invitation to tender sent to 7 companies worldwide for procurement equivalent of 4 cavities + 25% spares
- 4 Nb cavities to be manufactured by end of 2011
 - Rmq: HOM coupler design still to be defined
- 4 additional Nb cavities to be manufactured by end of 2013

Conclusions

Conclusions

- Mechanical shape / dimensions fixed
- Manufacturing technology chosen, manufacturing tolerances still TBC
- First manufacturing results => dimensions for Nb sheets and info on final cavity non uniform thickness
- Mechanical calculations:
 - Below allowable maximum stress for static calculations
 - Low frequency of transversal vibration modes (first at ~ 50 Hz)
 - Safety factor large enough to avoid buckling under external pressure
- Invitation to tender sent for Niobium procurement equivalent to 4 cavities + 25%
- More details on Indico cavity WG meetings