

HOM Coupler Development for SPL

U. van Rienen - H.-W. Glock

Universität Rostock - Institut für Allgemeine Elektrotechnik

4th SPL Collaboration Meeting jointly with ESS 30.6.-2.7.2010 Lund

M coupler for SPL - β =1 cavity needed, better than ...

... coaxial couplers without fundamental mode filter

Given coupler design limitations

- Orientation and longitudinal position fixed (cavity construction efforts, space needed for tuner, ...)
- (Inner) diameter (max.) 36 mm
- Same design on both sides of the cavity
- (De)mountable, not welded

ssical" LEP hook design as starting point

Traditio et Innovatio

ree design parameters electrodynamical CAE

RUSLUCK

~ 20 adjustable parameters

Name	Value	Description	Туре
D	100	beam axis - flange	Leng
D_HOM	10	! long. dist. HOMC - beam pipe taper	Leng
L_center	30	coupler hook center length straight part	Leng
L_coax	30	coupler cup end - coax end	Leng
L_cup	30	flange - coupler cup end	Leng
L_hook	34	coupler hook peripheral straight part leng	Leng
L_rod	10	flange-rod spacing	Leng
R_big	36/2	coupler rf radius	Leng
R_small	15/2	coax outer rf radius	Leng
Rotangle	60	! rotation angle of hook	None
X_position	0	not modify	Leng
Z_position	0	not modify	Leng
coax_diam	6.5152134	coax inner diameter (50 ohm 15 mm out)	Leng
d_hook_coax	2	<pre>!! distance capacity hook - coax !!</pre>	Leng
foot_cone_thick	1	hoot foot taper length	Leng
foot_diam	9	<pre>!! diameter capacity hook - coax !!</pre>	Leng
foot_thick	1	hook foot length	Leng
hook_d	2	<pre>!! distance hook-wall !!</pre>	Leng
hook_diam	7	coupler hook cylindrical diameter	Leng
r_lp1	65	! radius large beam pipe	Leng
r_lp2	40	! radius small beam pipe	Leng
rod_base	20	width of rod base	Leng
rod_thick	7	rod thickness	Leng
xlen_lc	28	! length beam pipe cone	Leng
1 1 4	05		1

ree design parameters – examples

aveguide-Coax-Transmission used to assess coupling

connection to external dump

e.g. example geometry - dependence on hook rotatio

ndamental mode rejection –

e.g. example geometry - dependence on hook rotatio

minimum of transmission occurs, but not at 704 MHz – to be tuned !

Id distributions give hints for design – e.g. example geometry – E-field geometry @ 704 MH

strong capacitive coupling between "hook" and outer conductor =>

Status and plan

- Description of fully parameterized coupler geometry available
- Many (~20) degrees of freedom to be taken into consideration
- Primary design criterion: notch filter to be tuned for fundamental mode freque
- Combination with cavity (as done for coaxial couplers), Q-determination with pole find algorithm
- Further optimization according polarization sensitivity (mainly TE11, TM11) ...
- ... Current density / loss density ...
- ... and further constructive aspects (cooling, manufacturing)

ne news regarding ESS and University of Rostock:

ERN-SPL*-Study, EUCARD**, DoHRo*** @ Rostock

CERN-SPL*:

HOM damping design for CERN-SPL-Study

EUCARD** – WP 10.5.3:

HOM distribution and geometrical dependencies (FLASH-1.3, FLASH-3.9, XFEL(?)) needed for HOM coupler signal based beam analysis

DoHRo*** – HOM:

-WP 1: HOM damping design for BERLINPRO

-WP 2: HOM damping design for ESS – high energy part of p-linac

-WP 3: Simplified electronics for HOM coupler signal based beam analysis

RN-SPL: "Design of HOM-Damping for CERN-SPL"; funded by German Federal Ministry of Research+Education, Project: 05H09 CARD: EU FP7 Research Infrastructure Grant No. 227579

ERN-SPL*-Study, EUCARD**, DoHRo*** @ Rostock

taff (% of FTE):	Funding:
Prof. Dr. Ursula van Rienen (~ 5%) Dr. Dirk Hecht (administrative; now ~ 5%) DiplIng. Thomas Flisgen (80% EUCARD**, 20% teaching)	Rostock University
Dr. Hans-Walter Glock	50% CERN-SPL* 25% EUCARD** 25% DoHRo***
DiplIng. Mirjana Ivanovska (50%, on pregnancy leave till Oct`10) DiplPhys. Tomasz Galek (100%, Oct.`09 - Jan.`10, 50% July`10 – Dez`10) J.NPhD: (50%)	CERN-SPL*
I.NPhD: (50%) Dr. Carsten Potratz (100%, from July`10)	DoHRo***

RN-SPL: "Design of HOM-Damping for CERN-SPL"; funded by German Federal Ministry of Research+Education, Project: 05H09

CARD: EU FP7 Research Infrastructure Grant No. 227579

Thank you for your attention.

litional stuff:

- lver overview
- SC principle
- ole identification
- -determination for coaxial couplers

Traditio et Innovatio

Methods for S-Parameter-Calculation (updated)

nsient Solver ahedral Grid

- oadband computation of Srameters via FFT.
- eak coupling between thogonal modes in rotational mmetric structures.

Frequency Solver Hexahedral Grid

- Appropriate for structures with high quality factors.
- Weak coupling between orthogonal modes in rotational symmetric structures.

Frequency Solver Tetrahedral Grid

- Appropriate for structures with high quality factors.
- Less number of unknowns is needed to describe HOM coupler
- Fast solver available for tetrahedral grids.

- Fast Resonant Solver Hexahedral Grid
- Appropriate both for structures high quality factors and couple set-ups.
- Weak coupling between orthog modes in rotational symmetric structures.
- Really fast
- Significant viola. or unitarity matrices below cut-off

- any time steps are needed to ach steady state due to large ne constants.
- Parameters do not show the tch effect of HOM coupler in
- easonable manner.

- Long computational time, because each S-Matrix has to be computed for every frequency sample.
- Very dense mesh is needed for

HOM

 Strong artificial coupling between orthogonal modes in rotational symmetric structures (e.g. cavity), due to non symmetric grid.

ncatenation procedure based on scattering operties: Coupled S-Parameter Computation = CSC

Split structure in sections

- Compute scattering (S-) parameters of all sections individually with appropriate solvers
- Compute overall S-parameters as function of f with special algorithm^{*}, applicable to any structure topology and mode number
- Derive loaded Q-values from S-parameter spectra
- *: o a + H W Clock K Dathomund II van Dianon: "CSC A System for Counled S Darameter Calculations" TESLA Depart

-β=1-cavity: M-Q_{load} from full setup computation of coax-coax-transmission

80 mm diameter shortened beam pipes

following Nov'09 SPL Meeting proposal: 30 mm diameter coaxial couplers

ix with antenna tip depth = 0:

- to avoid extreme Q-values
- scaling in a second step using coupler section's S-parameters in order to reach design
- fundamental mode Q

Entire transmission spectrum 0.65 – 2.80 GHz: • more than 400 resonances with wide Q-range

S-Parameter Magnitude in dB

ing Pole-fitting algorithm* to determine loaded Q's

fundamental mode passband - dots: cstStudio[©] computation - line: fit result

e-fitting algorithm: "Old" version

"Old" algorithm (see reference)

proved pole-fitting algorithm

Improved algorithm - corrects for higher order contributions, but still not working in any case

-value of lowest modes for 0 mm antenna depth:

value spectrum for 0 mm antenna depth:

Several HOM modes with Q values as high or above fundamental mode