Segmentation considerations for the ESS linac

Aurélien Ponton

European Spallation Source

4th SPL collaboration meeting jointly with ESS, 20 June-2 July 2010, Lund, Sweden

Aurélien Ponton

Segmentation considerations for the ESS linac

< □ > < □ > < □ > < Ξ > < Ξ >

Outline

- Definition of the segmentation
- The segmentation schemes for ESS

2 The spoke section

- Method of evaluation
- Overview of spoke cavities
- Considerations of 2 K operation
- Estimation of the cryogenic losses
 - Summary table
 - Analysis

Two segmentation schemes The spoke section Estimation of the cryogenic losses Conclusion

Introduction

Original question from Mats Lindroos:

Could you define the dimensions of the linac tunnel?

Investigation of different topics

- · Beam dynamics: consolidation of the ESS linac architecture
- Parameters and location of the linac components: cavities, magnets (inside or outside the cryostat), power couplers ...
- Reliability issues
- Tentative evaluation of the cryogenic power

ightarrow Study the segmentation

Two segmentation schemes The spoke section Estimation of the cryogenic losses Conclusion

Introduction

Original question from Mats Lindroos:

" Could you define the dimensions of the linac tunnel? "

Investigation of different topics

- · Beam dynamics: consolidation of the ESS linac architecture
- Parameters and location of the linac components: cavities, magnets (inside or outside the cryostat), power couplers ...
- Reliability issues
- Tentative evaluation of the cryogenic power

ightarrow Study the segmentation

Two segmentation schemes The spoke section Estimation of the cryogenic losses Conclusion

Introduction

Original question from Mats Lindroos:

" Could you define the dimensions of the linac tunnel? "

Investigation of different topics

- Beam dynamics: consolidation of the ESS linac architecture
- Parameters and location of the linac components: cavities, magnets (inside or outside the cryostat), power couplers ...
- Reliability issues
- Tentative evaluation of the cryogenic power

ightarrow Study the segmentation

Content • Definition of the segmentation • Presentation of the two linac architectures for the comparison study • Focus on spoke cavities • Consideration of 2 K operation • Estimation of the cryogenic consumption for the two extreme options

Two segmentation schemes The spoke section Estimation of the cryogenic losses Conclusion

Introduction

Original question from Mats Lindroos:

" Could you define the dimensions of the linac tunnel? "

Investigation of different topics

- Beam dynamics: consolidation of the ESS linac architecture
- Parameters and location of the linac components: cavities, magnets (inside or outside the cryostat), power couplers ...
- Reliability issues
- Tentative evaluation of the cryogenic power

ightarrow Study the segmentation

Content • Definition of the segmentation • Presentation of the two linac architectures for the comparison study • Focus on spoke cavities • Consideration of 2 K operation • Estimation of the cryogenic consumption for the two extreme options

Two segmentation schemes The spoke section Estimation of the cryogenic losses Conclusion

Introduction

Original question from Mats Lindroos:

" Could you define the dimensions of the linac tunnel? "

Investigation of different topics

- Beam dynamics: consolidation of the ESS linac architecture
- Parameters and location of the linac components: cavities, magnets (inside or outside the cryostat), power couplers ...
- Reliability issues
- Tentative evaluation of the cryogenic power

ightarrow Study the segmentation

Two segmentation schemes The spoke section Estimation of the cryogenic losses Conclusion

Introduction

Original question from Mats Lindroos:

" Could you define the dimensions of the linac tunnel? "

Investigation of different topics

- Beam dynamics: consolidation of the ESS linac architecture
- Parameters and location of the linac components: cavities, magnets (inside or outside the cryostat), power couplers ...
- Reliability issues
- Tentative evaluation of the cryogenic power

ightarrow Study the segmentation

Two segmentation schemes The spoke section Estimation of the cryogenic losses Conclusion

Introduction

Original question from Mats Lindroos:

" Could you define the dimensions of the linac tunnel? "

Investigation of different topics

- · Beam dynamics: consolidation of the ESS linac architecture
- Parameters and location of the linac components: cavities, magnets (inside or outside the cryostat), power couplers ...
- Reliability issues
- Tentative evaluation of the cryogenic power

ightarrow Study the segmentation

Two segmentation schemes The spoke section Estimation of the cryogenic losses Conclusion

Introduction

Original question from Mats Lindroos:

" Could you define the dimensions of the linac tunnel? "

Investigation of different topics

- · Beam dynamics: consolidation of the ESS linac architecture
- Parameters and location of the linac components: cavities, magnets (inside or outside the cryostat), power couplers ...
- Reliability issues
- Tentative evaluation of the cryogenic power

\longrightarrow Study the segmentation

Content • Definition of the segmentation • Presentation of the two linac architectures for the comparison study • Focus on spoke cavities • Consideration of 2 K operation • Estimation of the cryogenic consumption for the two extreme options

Two segmentation schemes The spoke section Estimation of the cryogenic losses Conclusion

Introduction

Original question from Mats Lindroos:

" Could you define the dimensions of the linac tunnel? "

Investigation of different topics

- · Beam dynamics: consolidation of the ESS linac architecture
- Parameters and location of the linac components: cavities, magnets (inside or outside the cryostat), power couplers ...
- Reliability issues
- Tentative evaluation of the cryogenic power

\longrightarrow Study the segmentation

Content Definition of the segmentation Presentation of the two linac architectures for the comparison study Focus on spoke cavities Consideration of 2 K operation Estimation of the cryogenic consumption for the two extreme options

Two segmentation schemes The spoke section Estimation of the cryogenic losses Conclusion

Introduction

Original question from Mats Lindroos:

" Could you define the dimensions of the linac tunnel? "

Investigation of different topics

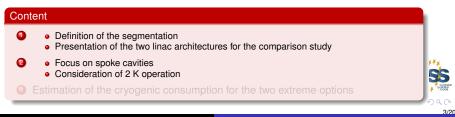
- · Beam dynamics: consolidation of the ESS linac architecture
- Parameters and location of the linac components: cavities, magnets (inside or outside the cryostat), power couplers ...
- Reliability issues
- Tentative evaluation of the cryogenic power

\longrightarrow Study the segmentation

Content • Definition of the segmentation • Presentation of the two linac architectures for the comparison study • Focus on spoke cavities • Consideration of 2 K operation • Estimation of the cryogenic consumption for the two extreme options

Two segmentation schemes The spoke section Estimation of the cryogenic losses Conclusion

Introduction


Original question from Mats Lindroos:

" Could you define the dimensions of the linac tunnel? "

Investigation of different topics

- Beam dynamics: consolidation of the ESS linac architecture
- Parameters and location of the linac components: cavities, magnets (inside or outside the cryostat), power couplers ...
- Reliability issues
- Tentative evaluation of the cryogenic power

\longrightarrow Study the segmentation

Two segmentation schemes The spoke section Estimation of the cryogenic losses Conclusion

Introduction

Original question from Mats Lindroos:

" Could you define the dimensions of the linac tunnel? "

Investigation of different topics

- Beam dynamics: consolidation of the ESS linac architecture
- Parameters and location of the linac components: cavities, magnets (inside or outside the cryostat), power couplers ...
- Reliability issues
- Tentative evaluation of the cryogenic power

\longrightarrow Study the segmentation

Content Definition of the segmentation Presentation of the two linac architectures for the comparison study Focus on spoke cavities Consideration of 2 K operation Estimation of the cryogenic consumption for the two extreme options

Two segmentation schemes The spoke section Estimation of the cryogenic losses Conclusion

Definition of the segmentation The segmentation schemes for ESS

Outline

- Definition of the segmentation
- The segmentation schemes for ESS

The spoke section

- Method of evaluation
- Overview of spoke cavities
- Considerations of 2 K operation
- Estimation of the cryogenic losses
 - Summary table
 - Analysis

Definition of the segmentation The segmentation schemes for ESS

What is segmentation?

Segmentation: CRYO-SEGMENTATION and VACUUM SEGMENTATION How the cryogenic power is distributed and shared along the (SC) linac?

Hightly) segmented linac

- Short and independant cryo-modules Large number of cold-to-warm transitions
- Concern: Reliability
 - Rapid exchange of one module.
 - Warm quadrupples: easy alignment
 ...
- Application: ADS (transmutation of nuclear wastes and energy production)

Not (much) segmented linac

- Long cryo-modules connected to form cryo-strings
 Reduction of the cold-to-warm transitions
- Concern: Filling factor (length) and static losses Maintenance scheduled during shutdown

Application: Linear colliders

Definition of the segmentation The segmentation schemes for ESS

What is segmentation?

Segmentation: CRYO-SEGMENTATION and VACUUM SEGMENTATION

How the cryogenic power is distributed and shared along the (SC) linac?

(Hightly) segmented linac

- Short and independant cryo-modules Large number of cold-to-warm transitions
- Concern: Reliability
 - Rapid exchange of one module.
 - Werm quadrupples: easy alignment)
 " . . .
- Application: ADS (transmutation of nuclear wastes and energy production)

Not (much) segmented linac

- Long cryo-modules connected to form cryo-strings
 Reduction of the cold-to-warm transitions
- Concern: Filling factor (length) and static losses Maintenance scheduled during shutdown

• Application: Linear colliders

Definition of the segmentation The segmentation schemes for ESS

What is segmentation?

Segmentation: CRYO-SEGMENTATION and VACUUM SEGMENTATION How the cryogenic power is distributed and shared along the (SC) linac?

(Hightly) segmented linac

- Short and independant cryo-modules Large number of cold-to-warm transitions
- Concern: Reliability
 - Rapid exchange of one module.
 - Warm quadrupples: easy alignment
 ...
- Application: ADS (transmutation of nuclear wastes and energy production)

Not (much) segmented linac

- Long cryo-modules connected to form cryo-strings
 Reduction of the cold-to-warm transitions
- Concern: Filling factor (length) and static losses
 Maintenance scheduled during shutdown

Application: Linear colliders

Segmenting linacs has a huge impact on cryostating (cryo-module design)

Definition of the segmentation The segmentation schemes for ESS

What is segmentation?

Segmentation: CRYO-SEGMENTATION and VACUUM SEGMENTATION How the cryogenic power is distributed and shared along the (SC) linac?

(Hightly) segmented linac

- Short and independant cryo-modules Large number of cold-to-warm transitions
- Concern: Reliability
 - Rapid exchange of one module
 - Warm quadrupoles: easy alignment
 ...
- Application: ADS (transmutation of nuclear wastes and energy production)

Not (much) segmented linac

- Long cryo-modules connected to form cryo-strings
 Reduction of the cold-to-warm transitions
- Concern: Filling factor (length) and static losses
 Maintenance scheduled during shutdown

Application: Linear colliders

Definition of the segmentation The segmentation schemes for ESS

What is segmentation?

Segmentation: CRYO-SEGMENTATION and VACUUM SEGMENTATION How the cryogenic power is distributed and shared along the (SC) linac?

(Hightly) segmented linac

- Short and independant cryo-modules Large number of cold-to-warm transitions
- Concern: Reliability
 - Rapid exchange of one module
 Warm quadrupoles: easy alignment
- Application: ADS (transmutation of nuclear wastes and energy production)

Not (much) segmented linac

- Long cryo-modules connected to form cryo-strings
 Reduction of the cold-to-warm transitions
- Concern: Filling factor (length) and static losses
 Maintenance scheduled during shutdown

Application: Linear colliders

Definition of the segmentation The segmentation schemes for ESS

What is segmentation?

Segmentation: CRYO-SEGMENTATION and VACUUM SEGMENTATION How the cryogenic power is distributed and shared along the (SC) linac?

(Hightly) segmented linac

- Short and independant cryo-modules Large number of cold-to-warm transitions
- Concern: Reliability
 - Rapid exchange of one module
 - Warm quadrupoles: easy alignment
 - • •
- Application: ADS (transmutation of nuclear wastes and energy production)

Not (much) segmented linac

- Long cryo-modules connected to form cryo-strings
 Reduction of the cold-to-warm transitions
- Concern: Filling factor (length) and static losses
 Maintenance scheduled during shutdown

• Application: Linear colliders

Definition of the segmentation The segmentation schemes for ESS

What is segmentation?

Segmentation: CRYO-SEGMENTATION and VACUUM SEGMENTATION How the cryogenic power is distributed and shared along the (SC) linac?

(Hightly) segmented linac

- Short and independant cryo-modules Large number of cold-to-warm transitions
- Concern: Reliability
 - Rapid exchange of one module
 - Warm quadrupoles: easy alignment
 - • •
- Application: ADS (transmutation of nuclear wastes and energy production)

Not (much) segmented linac

- Long cryo-modules connected to form cryo-strings
 Reduction of the cold-to-warm transitions
- Concern: Filling factor (length) and static losses
 Maintenance scheduled during shutdown

• Application: Linear colliders

Definition of the segmentation The segmentation schemes for ESS

What is segmentation?

Segmentation: CRYO-SEGMENTATION and VACUUM SEGMENTATION How the cryogenic power is distributed and shared along the (SC) linac?

(Hightly) segmented linac

- Short and independant cryo-modules Large number of cold-to-warm transitions
- Concern: Reliability
 - Rapid exchange of one module
 - Warm quadrupoles: easy alignment
 - . .
- Application: ADS (transmutation of nuclear wastes and energy production)

Not (much) segmented linac

- Long cryo-modules connected to form cryo-strings *Reduction of the cold-to-warm transitions*
- Concern: Filling factor (length) and static losses Maintenance scheduled during shutdown

• Application: Linear colliders

Definition of the segmentation The segmentation schemes for ESS

What is segmentation?

Segmentation: CRYO-SEGMENTATION and VACUUM SEGMENTATION How the cryogenic power is distributed and shared along the (SC) linac?

(Hightly) segmented linac

- Short and independant cryo-modules Large number of cold-to-warm transitions
- Concern: Reliability
 - Rapid exchange of one module
 - Warm quadrupoles: easy alignment
 - • •
- Application: ADS (transmutation of nuclear wastes and energy production)

Not (much) segmented linac

- Long cryo-modules connected to form cryo-strings *Reduction of the cold-to-warm transitions*
- Concern: Filling factor (length) and static losses Maintenance scheduled during shutdown

• Application: Linear colliders

Definition of the segmentation The segmentation schemes for ESS

What is segmentation?

Segmentation: CRYO-SEGMENTATION and VACUUM SEGMENTATION How the cryogenic power is distributed and shared along the (SC) linac?

(Hightly) segmented linac

- Short and independant cryo-modules Large number of cold-to-warm transitions
- Concern: Reliability
 - Rapid exchange of one module
 - Warm quadrupoles: easy alignment
 - • •
- Application: ADS (transmutation of nuclear wastes and energy production)

Not (much) segmented linac

- Long cryo-modules connected to form cryo-strings *Reduction of the cold-to-warm transitions*
- Concern: Filling factor (length) and static losses Maintenance scheduled during shutdown

Application: Linear colliders

Definition of the segmentation The segmentation schemes for ESS

What is segmentation?

Segmentation: CRYO-SEGMENTATION and VACUUM SEGMENTATION How the cryogenic power is distributed and shared along the (SC) linac?

(Hightly) segmented linac

- Short and independant cryo-modules Large number of cold-to-warm transitions
- Concern: Reliability
 - Rapid exchange of one module
 - Warm quadrupoles: easy alignment
 - • •
- Application: ADS (transmutation of nuclear wastes and energy production)

Not (much) segmented linac

- Long cryo-modules connected to form cryo-strings *Reduction of the cold-to-warm transitions*
- Concern: Filling factor (length) and static losses Maintenance scheduled during shutdown

• Application: Linear colliders

Definition of the segmentation The segmentation schemes for ESS

What is segmentation?

Segmentation: CRYO-SEGMENTATION and VACUUM SEGMENTATION How the cryogenic power is distributed and shared along the (SC) linac?

(Hightly) segmented linac

- Short and independant cryo-modules Large number of cold-to-warm transitions
- Concern: Reliability
 - Rapid exchange of one module
 - Warm quadrupoles: easy alignment
 - . .
- Application: ADS (transmutation of nuclear wastes and energy production)

Not (much) segmented linac

- Long cryo-modules connected to form cryo-strings *Reduction of the cold-to-warm transitions*
- Concern: Filling factor (length) and static losses Maintenance scheduled during shutdown

• Application: Linear colliders

Two segmentation schemes The spoke section Estimation of the cryogenic losses Conclusion

Definition of the segmentation The segmentation schemes for ESS

Two examples

Figure: The SC linac of FLASH

・ロト ・四ト ・ヨト ・ヨト

6/20

Figure: The SC linac at the SNS

Definition of the segmentation The segmentation schemes for ESS

ESS linac parameters

In the presented study, the ESS linac nominal parameters have been considered:

- *I* = 50 mA
- 50 MeV to 2.5 GeV
- 4 % beam duty cycle

Comment: See M. Eshraqi et al., "Conceptual Design of the ESS LINAC", proceedings of IPAC'10, for an updated ESS reference linac

Definition of the segmentation The segmentation schemes for ESS

ESS linac parameters

In the presented study, the ESS linac nominal parameters have been considered:

- *I* = 50 mA
- 50 MeV to 2.5 GeV
- 4 % beam duty cycle

Comment: See M. Eshraqi et al., "Conceptual Design of the ESS LINAC", proceedings of IPAC'10, for an updated ESS reference linac

Definition of the segmentation The segmentation schemes for ESS

The ESS segmented linac

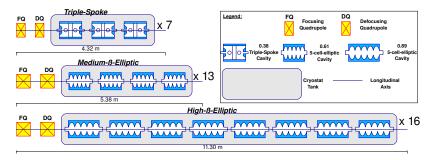


Figure: Periods of the segmented linac

イロト イポト イヨト イヨト

Definition of the segmentation The segmentation schemes for ESS

The ESS not segmented linac

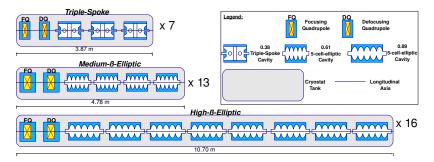
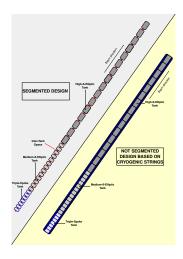



Figure: Periods of the not segmented linac

Two segmentation schemes The spoke section Estimation of the cryogenic losses Conclusion

First observations

Definition of the segmentation The segmentation schemes for ESS

Linac length (SC)

- Not segmented: 260 m
- Segmented: 281 m
- \longrightarrow only 8 % longer

Real estate gradient

The not segmented design does not offer significant advantages

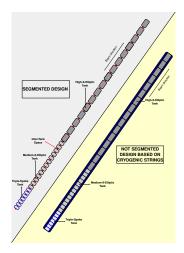

Can we estimate the heat loads in the cryogenic lines?

Figure: Schematic comparison of the two architectures

First observations

Linac length (SC)

- Not segmented: 260 m
- Segmented: 281 m
- ightarrow only 8 % longer

Real estate gradient

The not segmented design does not offer significant advantages

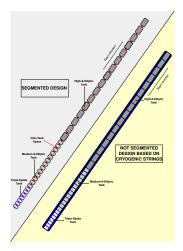

Can we estimate the heat loads in the cryogenic lines?

Figure: Schematic comparison of the two architectures

First observations

Linac length (SC)

- Not segmented: 260 m
- Segmented: 281 m
- \rightarrow only 8 % longer

Real estate gradient

The not segmented design does not offer significant advantages

Can we estimate the heat loads in the cryogenic lines?

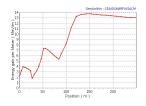
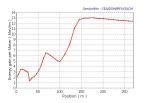


Figure: Schematic comparison of the two architectures


Two segmentation schemes The spoke section Estimation of the cryogenic losses Conclusion

Definition of the segmentation The segmentation schemes for ESS

First observations

Figure: Energy gain (not segmented linac)

Figure: Energy gain (segmented linac)

Linac length (SC)

- Not segmented: 260 m
- Segmented: 281 m
- \longrightarrow only 8 % longer

Real estate gradient

The not segmented design does not offer significant advantages

Can we estimate the heat loads in the cryogenic lines?

10/20

Aurélien Ponton

Segmentation considerations for the ESS linac

Introduction

Two segmentation schemes The spoke section Estimation of the cryogenic losses Conclusion

Definition of the segmentation The segmentation schemes for ESS

First observations

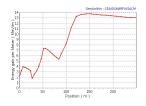


Figure: Energy gain (not segmented linac)

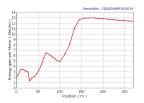


Figure: Energy gain (segmented linac)

Linac length (SC)

- Not segmented: 260 m
- Segmented: 281 m
- \longrightarrow only 8 % longer

Real estate gradient

The not segmented design does not offer significant advantages

Can we estimate the heat loads in the cryogenic lines?

10/20

Aurélien Ponton

Introduction Two segmentation schemes

Definition of the segmentation The segmentation schemes for ESS

First observations

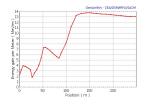


Figure: Energy gain (not segmented linac)

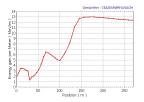


Figure: Energy gain (segmented linac)

Linac length (SC)

- Not segmented: 260 m
- Segmented: 281 m
- \longrightarrow only 8 % longer

Real estate gradient

The not segmented design does not offer significant advantages

Can we estimate the heat loads in the cryogenic lines?

10/20

Aurélien Ponton

Method of evaluation Overview of spoke cavities Considerations of 2 K operation

Outline

- Definition of the segmentation
- The segmentation schemes for ESS

2 The spoke section

- Method of evaluation
- Overview of spoke cavities
- Considerations of 2 K operation

Estimation of the cryogenic losses

- Summary table
- Analysis

Method of evaluation Overview of spoke cavities Considerations of 2 K operation

How to calculate the static and dynamic (RF) losses?

he static heat loads

Scaled from:

- CERN-SPL study for the not segmented desisn
- SNS experience for the segmented linac

The dynamic heat loads

Power dissipation in the cavity walls:

$$P_{diss} = \eta \frac{(-acc - acc)}{\left(\frac{r}{Q} \right) Q_0}$$

- Well known for elliptical cavities
- Few statistics for spoke resonators

Method of evaluation Overview of spoke cavities Considerations of 2 K operation

How to calculate the static and dynamic (RF) losses?

The static heat loads

Scaled from:

- CERN-SPL study for the not segmented desisn
- SNS experience for the segmented linac

The dynamic heat loads

Power dissipation in the cavity walls:

- Well known for elliptical cavities
- Few statistics for spoke resonators

Method of evaluation Overview of spoke cavities Considerations of 2 K operation

How to calculate the static and dynamic (RF) losses?

The static heat loads

Scaled from:

- CERN-SPL study for the not segmented desisn
- SNS experience for the segmented linac

The dynamic heat loads

Power dissipation in the cavity walls: $(E_{acc}L_{acc})^2$

- Well known for elliptical cavities
- Few statistics for spoke resonators

Method of evaluation Overview of spoke cavities Considerations of 2 K operation

How to calculate the static and dynamic (RF) losses?

The static heat loads

Scaled from:

- CERN-SPL study for the not segmented desisn
- SNS experience for the segmented linac

The dynamic heat loads

Power dissipation in the cavity walls: $P_{dlss} = \eta \frac{(E_{acc}L_{acc})^2}{\left(\frac{r}{Q}\right)Q_0}$

- Well known for elliptical cavities
- Few statistics for spoke resonators

Method of evaluation Overview of spoke cavities Considerations of 2 K operation

How to calculate the static and dynamic (RF) losses?

The static heat loads

Scaled from:

- CERN-SPL study for the not segmented desisn
- SNS experience for the segmented linac

The dynamic heat loads

Power dissipation in the cavity walls: $P_{diss} = \eta \frac{(E_{acc}L_{acc})^2}{\left(\frac{r}{Q}\right)Q_0}$

Evaluate the dynamic heat load requires to know the cavity parameters:

- Well known for elliptical cavities
- Few statistics for spoke resonators

Method of evaluation Overview of spoke cavities Considerations of 2 K operation

How to calculate the static and dynamic (RF) losses?

The static heat loads

Scaled from:

- CERN-SPL study for the not segmented desisn
- SNS experience for the segmented linac

The dynamic heat loads

Power dissipation in the cavity walls: $P_{diss} = \eta \frac{(E_{acc}L_{acc})^2}{\left(\frac{r}{2}\right)Q_0}$

- Well known for elliptical cavities
- Few statistics for spoke resonators

Method of evaluation Overview of spoke cavities Considerations of 2 K operation

How to calculate the static and dynamic (RF) losses?

The static heat loads

Scaled from:

- CERN-SPL study for the not segmented desisn
- SNS experience for the segmented linac

The dynamic heat loads

Power dissipation in the cavity walls: $P_{diss} = \eta \frac{(E_{acc}L_{acc})^2}{\left(\frac{r}{2}\right)Q_0}$

- Well known for elliptical cavities
- Few statistics for spoke resonators

Method of evaluation Overview of spoke cavities Considerations of 2 K operation

How to calculate the static and dynamic (RF) losses?

The static heat loads

Scaled from:

- CERN-SPL study for the not segmented desisn
- SNS experience for the segmented linac

The dynamic heat loads

Power dissipation in the cavity walls: $P_{diss} = \eta \frac{(E_{acc}L_{acc})^2}{\left(\frac{f}{C}\right)Q_0}$

Evaluate the dynamic heat load requires to know the cavity parameters:

- Well known for elliptical cavities
- Few statistics for spoke resonators

Method of evaluation Overview of spoke cavities Considerations of 2 K operation

Quality factor and shunt impedance

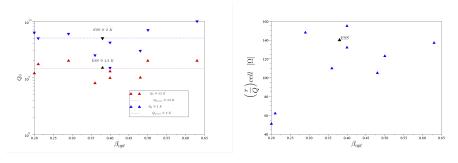
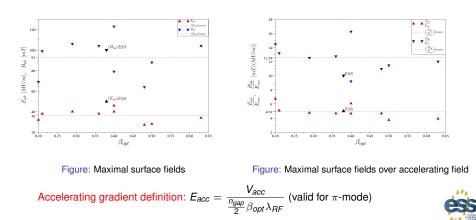


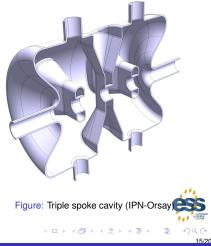
Figure: Quality factor


Figure: Shunt impedance over quality factor

イロト イポト イヨト イヨト

Method of evaluation Overview of spoke cavities Considerations of 2 K operation

Peak fields



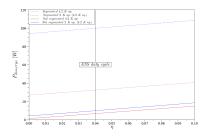
Method of evaluation Overview of spoke cavities Considerations of 2 K operation

Proposed ESS spoke cavity parameters

Frequency	352.21 MHz
Cell number	4
Wall-to-wall length	647 <i>mm</i>
Optimal beta	0.38
Maximum surface peak electric field	50 MV/m
Maximum surface peak magnetic field	100 <i>mŤ</i>
Cavity quality factor at 4.2 K	1.5 · 10 ⁹
at 2 <i>K</i>	5 · 10 ⁹
r/Q	560 Ω
Nominal accelerating gradient	8 <i>MV m</i>

Table: ESS triple-spoke cavity parameters

Method of evaluation Overview of spoke cavities Considerations of 2 K operation


Spoke 2 K operation

• $R_s \propto f^2$: for f = 352.24 MHz $T_{He} = 4.2$ K is sufficient • $\epsilon_{4.2 \text{ K}}/\epsilon_{2 \text{ K}} = 3.5$

Why shall we consider a possible 2 K operation?

 $\bullet \longrightarrow \mathsf{Reduced}\;\mathsf{RF}$ losses at 2 K could offset the financial aspect increase in refrigeration cost

 $\bullet \longrightarrow$ Better accelerating performances, better mechanical behavior

Observations

- Segmented design:
 - Dominated by static losses
 - Losses become prohibilitye for 2 K operation
- Not segmented design:

Operating spoke at 2 K is not meaningful

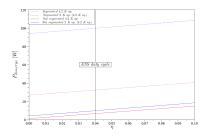
What is the cryogenic consumption for the

16/20

Figure: Estimated heat loads

Aurélien Ponton

Method of evaluation Overview of spoke cavities Considerations of 2 K operation


Spoke 2 K operation

- $R_s \propto f^2$: for f = 352.24 MHz $T_{He} = 4.2$ K is sufficient
- ϵ_{4.2 K} / ϵ_{2 K} = 3.5

Why shall we consider a possible 2 K operation?

 $\bullet \longrightarrow \mathsf{Reduced}\;\mathsf{RF}$ losses at 2 K could offset the financial aspect increase in refrigeration cost

ullet \longrightarrow Better accelerating performances, better mechanical behavior

Observations

- Segmented design:
 - Dominated by static losses
 - Losses become prohibitive for 2 K operation
- Not segmented design:

Operating spoke at 2 K is not meaningful

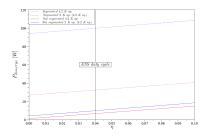
What is the cryogenic consumption for the

16/20

Figure: Estimated heat loads

Aurélien Ponton

Method of evaluation Overview of spoke cavities Considerations of 2 K operation


Spoke 2 K operation

- $R_s \propto f^2$: for f = 352.24 MHz $T_{He} = 4.2$ K is sufficient
- ϵ_{4.2 K} / ϵ_{2 K} = 3.5

Why shall we consider a possible 2 K operation?

 $\bullet \longrightarrow \mbox{Reduced RF}$ losses at 2 K could offset the financial aspect increase in refrigeration cost

ullet \longrightarrow Better accelerating performances, better mechanical behavior

Observations

- Segmented design:
 - Dominated by static losses
 - Losses become prohibilitive for 2 K operation
- Not segmented design:

Operating spoke at 2 K is not meaningful

What is the cryogenic consumption for the

16/20

Figure: Estimated heat loads

Aurélien Ponton

Method of evaluation Overview of spoke cavities Considerations of 2 K operation

Spoke 2 K operation

- $R_s \propto f^2$: for f = 352.24 MHz $T_{He} = 4.2$ K is sufficient
- ϵ_{4.2 K} / ϵ_{2 K} = 3.5

Why shall we consider a possible 2 K operation?

 $\bullet \longrightarrow \mbox{Reduced RF}$ losses at 2 K could offset the financial aspect increase in refrigeration cost

 $\bullet \longrightarrow$ Better accelerating performances, better mechanical behavior

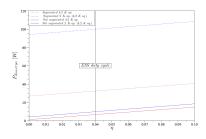
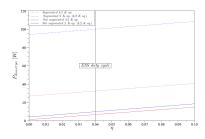


Figure: Estimated heat loads

Aurélien Ponton

Method of evaluation Overview of spoke cavities Considerations of 2 K operation


Spoke 2 K operation

- $R_s \propto f^2$: for f = 352.24 MHz $T_{He} = 4.2$ K is sufficient
- ϵ_{4.2 K} / ϵ_{2 K} = 3.5

Why shall we consider a possible 2 K operation?

 $\bullet \longrightarrow \mbox{Reduced RF}$ losses at 2 K could offset the financial aspect increase in refrigeration cost

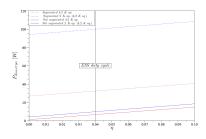
• ----> Better accelerating performances, better mechanical behavior

Observations Segmented design: • Dominated by static losses • Losses become prohibitive for 2 K operation • Not segmented design: • Losses of the same order • Cosses • Cosses of the same orde

Figure: Estimated heat loads

Aurélien Ponton

Method of evaluation Overview of spoke cavities Considerations of 2 K operation


Spoke 2 K operation

- $R_s \propto f^2$: for f = 352.24 MHz $T_{He} = 4.2$ K is sufficient
- ϵ_{4.2 K} / ϵ_{2 K} = 3.5

Why shall we consider a possible 2 K operation?

 $\bullet \longrightarrow \mbox{Reduced RF}$ losses at 2 K could offset the financial aspect increase in refrigeration cost

• ----> Better accelerating performances, better mechanical behavior

Observations

- Segmented design:
 - Dominated by static losses
 - Losses become prohibitive for 2 K operation

Ont segmented design:

- · Losses of the same order
- Q_{0,2 K} not sufficient

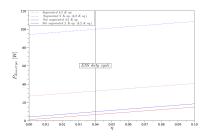
Operating spoke at 2 K is not meaningful

What is the cryogenic consumption for 神道

16/20

Figure: Estimated heat loads

Method of evaluation Overview of spoke cavities Considerations of 2 K operation


Spoke 2 K operation

- $R_s \propto f^2$: for f = 352.24 MHz $T_{He} = 4.2$ K is sufficient
- ϵ_{4.2 K} / ϵ_{2 K} = 3.5

Why shall we consider a possible 2 K operation?

 $\bullet \longrightarrow \mbox{Reduced RF}$ losses at 2 K could offset the financial aspect increase in refrigeration cost

• ----> Better accelerating performances, better mechanical behavior

Observations

- Segmented design:
 - Dominated by static losses
 - Losses become prohibitive for 2 K operation

Ont segmented design:

- Losses of the same order
- Q_{0,2 K} not sufficient

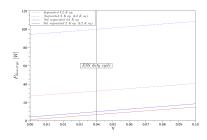
Operating spoke at 2 K is not meaningful

< - whole line 2 < = >

16/20

Figure: Estimated heat loads

Method of evaluation Overview of spoke cavities Considerations of 2 K operation


Spoke 2 K operation

- $R_s \propto f^2$: for f = 352.24 MHz $T_{He} = 4.2$ K is sufficient
- ϵ_{4.2 K} / ϵ_{2 K} = 3.5

Why shall we consider a possible 2 K operation?

 $\bullet \longrightarrow \mbox{Reduced RF}$ losses at 2 K could offset the financial aspect increase in refrigeration cost

• ----> Better accelerating performances, better mechanical behavior

Observations

- Segmented design:
 - Dominated by static losses
 - Losses become prohibitive for 2 K operation

Ont segmented design:

- Losses of the same order
- Q_{0,2 K} not sufficient

Operating spoke at 2 K is not meaningful

What is the cryogenic consumption for the whole linac?

16/20

Figure: Estimated heat loads

Summary table Analysis

Outline

- Definition of the segmentation
- The segmentation schemes for ESS

The spoke section

- Method of evaluation
- Overview of spoke cavities
- Considerations of 2 K operation

Estimation of the cryogenic losses

- Summary table
- Analysis

Summary table Analysis

All the results are here!

		Triple- spoke	Medium-β- elliptic	High- <i>β</i> elliptic	
Dynamic R	F load	(4.2 K op.) 5.47			
per module [W]		(2 K op.) 1.64	8.43	37.30	
Static load	Segmented	24.79	25.71	34.69	
per module [W]	Not segmented	1.20	1.48	3.32	
Static heat load contribution [%]	Segmented	(4.2 K op.) 82	75	48	
		(2 K op.) 94			
	Not segmented	(4.2 K op.) 18	15	-	
		(2 K op.) 42		8	
Heat load per mo	dule in the				
5 - 8 K level shi	elding [W]	6.33	7.82	17.50	
(only for the not seg	mented design)				
Contribution of the	ne shielding	(4.2 K op.) 49			
to the total heat	load [%]	(4.2 K op.) 49 (2 K op.) 39	18	11	
(only for the not seg	mented design)	(2 A op.) 39			
Total heat	Segmented	(4.2 K op.) 30.26	119.49	251.97	
		(2 K op.) 92.51			
load per module	Not segmented	(4.2 K op.) 13.00	42.51	159.67	
[W] eq. at 4.2 K		(2 K op.) 16.27			
Total heat	Segmented	(4.2 K op.) 0.212	1.553	4.032	
load per section	Segmented	(2 K op.) 0.648	1.003		
	Network	(4.2 K op.) 0.091	0.553	0.550	2.555
[kW] eq. at 4.2 K	Not segmented	(2 K op.) 0.114		2.555	
Total contribution	Segmented	(4.2 K op.) 3.7	26.8	69.6	
Total contribution per section [%]	Segmented	(2 K op.) 10.4	24.9	64.7	
	Not segmented	(4.2 K op.) 2.8	17.3	79.9	
	Not segmented	(2 K op.) 3.5	17.2	79.3	
Total heat load per linac [kW] eq. at 4.2 K	Segmented	(4.2 K op.)	5.797		
		(2 K op.)	6.233		
	Not segmented	(4.2 K op.)	3.199		
		(2 K op.)		222	
Total heat load per linac	Segmented	(4.2 K op.)		533	
	organetited	(2 K op.))22	
[kW] eq. at 4.2 K	Not segmented	(4.2 K op.)		043	
incl. 1 W/m beam loss	(2 K op.)	4.133			

The study:

- Investigates four different scenarios
- ② Details the losses for each section

イロト イポト イヨト イヨト

Summary table Analysis

All the results are here!

		Triple- spoke	Medium-β- elliptic	High-/
Dynamic R	F load	(4.2 K op.) 5.47		
per module [W]		(2 K op.) 1.64	8.43	37.30
Static load	Segmented	24.79	25.71	34.69
per module [W]	Not segmented	1.20	1.48	3.32
Static heat load contribution [%]	Segmented	(4.2 K op.) 82	75	48
		(2 K op.) 94		
	Not segmented	(4.2 K op.) 18	15	8
		(2 K op.) 42		8
Heat load per me	odule in the			
5 - 8 K level sh	ielding [W]	6.33	7.82	17.50
(only for the not seg	mented design)			
Contribution of t		(4.2 K op.) 49		
to the total hear	t load [%]	(4.2 K op.) 49 (2 K op.) 39	18	11
(only for the not seg	mented design)			
Total heat load per module	Segmented	(4.2 K op.) 30.26	119.49	251.97
		(2 K op.) 92.51		
[W] eq. at 4.2 K	Not segmented	(4.2 K op.) 13.00	42.51	159.67
[w] eq. at 4.2 K		(2 K op.) 16.27		
Total heat	Segmented	(4.2 K op.) 0.212	1.553 0.553	4.032
load per section	orginemed	(2 K op.) 0.648		4.002
[kW] eq. at 4.2 K	Not segmented	(4.2 K op.) 0.091		2.555
[kiii] eq. at 4.2 H	ivor segmented	(2 K op.) 0.114		
Total contribution per section [%]	Segmented	(4.2 K op.) 3.7	26.8	69.6
	orginented	(2 K op.) 10.4	24.9	64.7
	Not segmented	(4.2 K op.) 2.8	17.3	79.9
		(2 K op.) 3.5	17.2	79.3
Total heat load per linac [kW] eq. at 4.2 K	Segmented	(4.2 K op.)	5.797	
	orginemed	(2 K op.)	6.233	
	Not segmented	(4.2 K op.)	3.199	
		(2 K op.)		222
Total heat load per linac [kW] eq. at 4.2 K	Segmented Not segmented	(4.2 K op.)		533
		(2 K op.)		022
		(4.2 K op.) (2 K op.)	4.043	
ncl. 1 W/m beam loss	cl. 1 W/m beam loss		4.133	

The study:

- Investigates four different scenarios
- 2 Details the losses for each section

イロト イポト イヨト イヨト

Summary table Analysis

Comparison of the estimations

The segmented linac

- Largely dominated by static losses
 - Triple-spoke: 94 % (2 K) and 82 % (4 K)
 - Medium-β-elliptic: 75 %
 - High- β -elliptic: 48 %
- Operating spoke at 2 K: spoke contribution raises from 3.7 % to 10.4 %
- Total cryogenic power: 6.2 kW

The cryo-string-based linac

- RF losses play an important role
 - Triple-spoke: 58 % (2 K) and 82 % (4 K)
 - Medium-β-elliptic: 85 %
 - High-β-elliptic: 92 %
- Operating spoke at 2 K adds a negligible contribution to the total loads
- ~ 260 m of SC modules: ~ 1 kW (eq at 4 K) of cryogenic consumption induced by beam losses (1 W/m)

• Total cryogenic power: 4 kW

Summary table Analysis

Comparison of the estimations

The segmented linac

- Largely dominated by static losses
 - Triple-spoke: 94 % (2 K) and 82 % (4 K)
 - Medium-β-elliptic: 75 %
 - High-β-elliptic: 48 %
- Operating spoke at 2 K: spoke contribution raises from 3.7 % to 10.4 %
- Total cryogenic power: 6.2 kW

The cryo-string-based linac

- RF losses play an important role
 - Triple-spoke: 58 % (2 K) and 82 % (4 K)
 - Medium- β -elliptic: 85 %
 - High-β-elliptic: 92 %
- Operating spoke at 2 K adds a negligible contribution to the total loads
- ~ 260 m of SC modules: ~ 1 kW (eq at 4 K) of cryogenic consumption induced by beam losses (1 W/m)

Total cryogenic power: 4 kW

Summary table Analysis

Comparison of the estimations

The segmented linac

- Largely dominated by static losses
 - Triple-spoke: 94 % (2 K) and 82 % (4 K)
 - Medium-β-elliptic: 75 %
 - High-β-elliptic: 48 %
- Operating spoke at 2 K: spoke contribution raises from 3.7 % to 10.4 %
- Total cryogenic power: 6.2 kW

The cryo-string-based linac

- RF losses play an important role
 - Triple-spoke: 58 % (2 K) and 82 % (4 K)
 - Medium- β -elliptic: 85 %
 - High-β-elliptic: 92 %
- Operating spoke at 2 K adds a negligible contribution to the total loads
- ~ 260 m of SC modules: ~ 1 kW (eq at 4 K) of cryogenic consumption induced by beam losses (1 W/m)

Total cryogenic power: 4 kW

The hightly segmented linac requires 1.6 – 1.7 times more cryogenic power than the cryo-string-based linac

Summary table Analysis

Comparison of the estimations

The segmented linac

- Largely dominated by static losses
 - Triple-spoke: 94 % (2 K) and 82 % (4 K)
 - Medium-β-elliptic: 75 %
 - High-β-elliptic: 48 %
- Operating spoke at 2 K: spoke contribution raises from 3.7 % to 10.4 %
- Total cryogenic power: 6.2 kW

The cryo-string-based linac

- RF losses play an important role
 - Triple-spoke: 58 % (2 K) and 82 % (4 K)
 - Medium-β-elliptic: 85 %
 - High-β-elliptic: 92 %
- Operating spoke at 2 K adds a negligible contribution to the total loads
- ~ 260 m of SC modules: ~ 1 kW (eq. at 4 K) of cryogenic consumption induced by beam losses (1 W/m)

• Total cryogenic power: 4 kW

Summary table Analysis

Comparison of the estimations

The segmented linac

- Largely dominated by static losses
 - Triple-spoke: 94 % (2 K) and 82 % (4 K)
 - Medium-β-elliptic: 75 %
 - High-β-elliptic: 48 %
- Operating spoke at 2 K: spoke contribution raises from 3.7 % to 10.4 %
- Total cryogenic power: 6.2 kW

The cryo-string-based linac

- RF losses play an important role
 - Triple-spoke: 58 % (2 K) and 82 % (4 K)
 - Medium-β-elliptic: 85 %
 - High-β-elliptic: 92 %
- Operating spoke at 2 K adds a negligible contribution to the total loads
- ~ 260 m of SC modules: ~ 1 kW (eq. at 4 K) of cryogenic consumption induced by beam losses (1 W/m)

Total cryogenic power: 4 kW

Summary table Analysis

Comparison of the estimations

The segmented linac

- Largely dominated by static losses
 - Triple-spoke: 94 % (2 K) and 82 % (4 K)
 - Medium-β-elliptic: 75 %
 - High-β-elliptic: 48 %
- Operating spoke at 2 K: spoke contribution raises from 3.7 % to 10.4 %
- Total cryogenic power: 6.2 kW

The cryo-string-based linac

- RF losses play an important role
 - Triple-spoke: 58 % (2 K) and 82 % (4 K)
 - Medium-β-elliptic: 85 %
 - High- β -elliptic: 92 %
- Operating spoke at 2 K adds a negligible contribution to the total loads
- ~ 260 m of SC modules: ~ 1 kW (eq. at 4 K) of cryogenic consumption induced by beam losses (1 W/m)

Total cryogenic power: 4 kW

Summary table Analysis

Comparison of the estimations

The segmented linac

- Largely dominated by static losses
 - Triple-spoke: 94 % (2 K) and 82 % (4 K)
 - Medium-β-elliptic: 75 %
 - High-β-elliptic: 48 %
- Operating spoke at 2 K: spoke contribution raises from 3.7 % to 10.4 %
- Total cryogenic power: 6.2 kW

The cryo-string-based linac

- RF losses play an important role
 - Triple-spoke: 58 % (2 K) and 82 % (4 K)
 - Medium-β-elliptic: 85 %
 - High-β-elliptic: 92 %
- Operating spoke at 2 K adds a negligible contribution to the total loads
- ~ 260 m of SC modules: ~ 1 kW (eq. at 4 K) of cryogenic consumption induced by beam losses (1 W/m)

• Total cryogenic power: 4 kW

Summary table Analysis

Comparison of the estimations

The segmented linac

- Largely dominated by static losses
 - Triple-spoke: 94 % (2 K) and 82 % (4 K)
 - Medium-β-elliptic: 75 %
 - High-β-elliptic: 48 %
- Operating spoke at 2 K: spoke contribution raises from 3.7 % to 10.4 %
- Total cryogenic power: 6.2 kW

The cryo-string-based linac

- RF losses play an important role
 - Triple-spoke: 58 % (2 K) and 82 % (4 K)
 - Medium-β-elliptic: 85 %
 - High-β-elliptic: 92 %
- Operating spoke at 2 K adds a negligible contribution to the total loads
- ~ 260 m of SC modules: ~ 1 kW (eq. at 4 K) of cryogenic consumption induced by beam losses (1 W/m)

• Total cryogenic power: 4 kW

Summary table Analysis

Comparison of the estimations

The segmented linac

- Largely dominated by static losses
 - Triple-spoke: 94 % (2 K) and 82 % (4 K)
 - Medium-β-elliptic: 75 %
 - High-β-elliptic: 48 %
- Operating spoke at 2 K: spoke contribution raises from 3.7 % to 10.4 %
- Total cryogenic power: 6.2 kW

The cryo-string-based linac

- RF losses play an important role
 - Triple-spoke: 58 % (2 K) and 82 % (4 K)
 - Medium-β-elliptic: 85 %
 - High-β-elliptic: 92 %
- Operating spoke at 2 K adds a negligible contribution to the total loads
- ~ 260 m of SC modules: ~ 1 kW (eq. at 4 K) of cryogenic consumption induced by beam losses (1 W/m)

• Total cryogenic power: 4 kW

Summary table Analysis

Comparison of the estimations

The segmented linac

- Largely dominated by static losses
 - Triple-spoke: 94 % (2 K) and 82 % (4 K)
 - Medium-β-elliptic: 75 %
 - High-β-elliptic: 48 %
- Operating spoke at 2 K: spoke contribution raises from 3.7 % to 10.4 %
- Total cryogenic power: 6.2 kW

The cryo-string-based linac

- RF losses play an important role
 - Triple-spoke: 58 % (2 K) and 82 % (4 K)
 - Medium-β-elliptic: 85 %
 - High-β-elliptic: 92 %
- Operating spoke at 2 K adds a negligible contribution to the total loads
- ~ 260 m of SC modules: ~ 1 kW (eq. at 4 K) of cryogenic consumption induced by beam losses (1 W/m)

• Total cryogenic power: 4 kW

Summary table Analysis

Comparison of the estimations

The segmented linac

- Largely dominated by static losses
 - Triple-spoke: 94 % (2 K) and 82 % (4 K)
 - Medium-β-elliptic: 75 %
 - High-β-elliptic: 48 %
- Operating spoke at 2 K: spoke contribution raises from 3.7 % to 10.4 %
- Total cryogenic power: 6.2 kW

The cryo-string-based linac

- RF losses play an important role
 - Triple-spoke: 58 % (2 K) and 82 % (4 K)
 - Medium-β-elliptic: 85 %
 - High-β-elliptic: 92 %
- Operating spoke at 2 K adds a negligible contribution to the total loads
- ~ 260 m of SC modules: ~ 1 kW (eq. at 4 K) of cryogenic consumption induced by beam losses (1 W/m)

• Total cryogenic power: 4 kW

Conclusion

Summary

- Presentation of two linac architectures:
 - ----> Real estate and lengths: no significant difference
- Focus on spoke resonators
 - Proposed spoke parameters
 - Consideration of 2 K operation: more cryogenic power required
- Tentative comparison study of the cryogenic consumption → 1.6 - 1.7 times more cryogenic power for the segmented lina.

- Benefits from the cryogenic technology state-of-the-art to reduce the static heat loads of the segmented linac
- Hybrid option may be considered
- Segmentation is part of an iterative process: beam dynamics, cryogenics, RF and mechanical design, costing ...
- ESS: > 22 instruments and a community of 5 000 users!

Conclusion

Summary

- Presentation of two linac architectures:
 - ---> Real estate and lengths: no significant difference
- Pocus on spoke resonators
 - Proposed spoke parameters
 - Consideration of 2 K operation: more cryogenic power required
- Solution Tentative comparison study of the cryogenic consumption $\rightarrow 1.6 - 1.7$ times more cryogenic power for the segmented line

- Benefits from the cryogenic technology state-of-the-art to reduce the static heat loads of the segmented linac
- Hybrid option may be considered
- Segmentation is part of an iterative process: beam dynamics, cryogenics, RF and mechanical design, costing ...
- ESS: > 22 instruments and a community of 5 000 users!

Conclusion

Summary

● Presentation of two linac architectures: → Real estate and lengths: no significant difference

- Focus on spoke resonators
 - Proposed spoke parameters
 - Consideration of 2 K operation: more cryogenic power required

③ Tentative comparison study of the cryogenic consumption $\rightarrow 1.6 - 1.7$ times more cryogenic power for the segmented lina

- Benefits from the cryogenic technology state-of-the-art to reduce the static heat loads of the segmented linac
- Hybrid option may be considered
- Segmentation is part of an iterative process: beam dynamics, cryogenics, RF and mechanical design, costing . . .
- ESS: > 22 instruments and a community of 5 000 users!

Conclusion

Summary

- Presentation of two linac architectures:
 - \longrightarrow Real estate and lengths: no significant difference
- Pocus on spoke resonators
 - Proposed spoke parameters
 - Consideration of 2 K operation: more cryogenic power required

Interview of the segmentation of the cryogenic consumption → 1.6 - 1.7 times more cryogenic power for the segmented lina.

- Benefits from the cryogenic technology state-of-the-art to reduce the static heat loads of the segmented linac
- Hybrid option may be considered
- Segmentation is part of an iterative process: beam dynamics, cryogenics, RF and mechanical design, costing ...
- ESS: > 22 instruments and a community of 5 000 users!

Conclusion

Summary

- Presentation of two linac architectures:
 - \longrightarrow Real estate and lengths: no significant difference
- Pocus on spoke resonators
 - Proposed spoke parameters
 - Consideration of 2 K operation: more cryogenic power required

Intrative comparison study of the cryogenic consumption → 1.6 - 1.7 times more cryogenic power for the segmented linac

- Benefits from the cryogenic technology state-of-the-art to reduce the static heat loads of the segmented linac
- Hybrid option may be considered
- Segmentation is part of an iterative process: beam dynamics, cryogenics, RF and mechanical design, costing . . .
- ESS: > 22 instruments and a community of 5 000 users!

Conclusion

Summary

- Presentation of two linac architectures:
 - \longrightarrow Real estate and lengths: no significant difference
- Pocus on spoke resonators
 - Proposed spoke parameters
 - Consideration of 2 K operation: more cryogenic power required
- Tentative comparison study of the cryogenic consumption
 - \longrightarrow 1.6 1.7 times more cryogenic power for the segmented linac

- Benefits from the cryogenic technology state-of-the-art to reduce the static heat loads of the segmented linac
- Hybrid option may be considered
- Segmentation is part of an iterative process: beam dynamics, cryogenics, RF and mechanical design, costing ...
- ESS: > 22 instruments and a community of 5 000 users!

Conclusion

Summary

- Presentation of two linac architectures:
 - \longrightarrow Real estate and lengths: no significant difference
- Pocus on spoke resonators
 - Proposed spoke parameters
 - Consideration of 2 K operation: more cryogenic power required
- Tentative comparison study of the cryogenic consumption
 - \longrightarrow 1.6 1.7 times more cryogenic power for the segmented linac

Perspectives

- Benefits from the cryogenic technology state-of-the-art to reduce the static heat loads of the segmented linac
- Hybrid option may be considered
- Segmentation is part of an iterative process: beam dynamics, cryogenics, RF and mechanical design, costing ...
- ESS: > 22 instruments and a community of 5 000 users!

Conclusion

Summary

- Presentation of two linac architectures:
 - \longrightarrow Real estate and lengths: no significant difference
- Pocus on spoke resonators
 - Proposed spoke parameters
 - Consideration of 2 K operation: more cryogenic power required
- Tentative comparison study of the cryogenic consumption
 - \longrightarrow 1.6 1.7 times more cryogenic power for the segmented linac

Perspectives

- Benefits from the cryogenic technology state-of-the-art to reduce the static heat loads of the segmented linac
- Hybrid option may be considered
- Segmentation is part of an iterative process: beam dynamics, cryogenics, RF and mechanical design, costing ...
- ESS: > 22 instruments and a community of 5 000 users!

Conclusion

Summary

- Presentation of two linac architectures:
 - \longrightarrow Real estate and lengths: no significant difference
- Pocus on spoke resonators
 - Proposed spoke parameters
 - Consideration of 2 K operation: more cryogenic power required
- Tentative comparison study of the cryogenic consumption
 - \longrightarrow 1.6 1.7 times more cryogenic power for the segmented linac

Perspectives

- Benefits from the cryogenic technology state-of-the-art to reduce the static heat loads of the segmented linac
- Hybrid option may be considered
- Segmentation is part of an iterative process: beam dynamics, cryogenics, RF and mechanical design, costing ...
- ESS: > 22 instruments and a community of 5 000 users!

Conclusion

Summary

- Presentation of two linac architectures:
 - \longrightarrow Real estate and lengths: no significant difference
- Pocus on spoke resonators
 - Proposed spoke parameters
 - Consideration of 2 K operation: more cryogenic power required
- Tentative comparison study of the cryogenic consumption
 - \longrightarrow 1.6 1.7 times more cryogenic power for the segmented linac

- Benefits from the cryogenic technology state-of-the-art to reduce the static heat loads of the segmented linac
- Hybrid option may be considered
- Segmentation is part of an iterative process: beam dynamics, cryogenics, RF and mechanical design, costing ...
- ESS: > 22 instruments and a community of 5 000 users!

