STATUS REPORT to the ISOLDE and Neutron Time-of-Flight Committee

Spectroscopy of particle-phonon coupled states in ¹³³Sb by the cluster transfer reaction ¹³²Sn on ⁷Li: an advanced test of nuclear interactions

[23rd May 2019]

<u>S. Leoni^{1,2}</u>, G. Benzoni², S. Bottoni¹, A. Bracco^{1,2}, F. Camera^{1,2}, F.C.L. Crespi^{1,2}, C. Porzio^{1,2}, S. Ziliani^{1,2} B. Fornal³, P. Bednarczyk³, N. Cieplicka-Orynczak³, L. Iskra^{2,3}, A. Maj³ K. Rusek⁴ D. Bazzacco⁵, D. Mengoni⁵, F. Recchia⁵, ... J. Valiente-Dobon⁶, F. Gramegna⁶, T. Marchi⁶ R. Raabe⁷, P. Van Duppen⁷, ... M. Sferrazza⁸ G. Georgiev⁹ P. Reiter¹⁰, N. Warr¹⁰, A. Blazhev¹⁰, M. Seidlitz¹⁰, ... T. Kroell¹¹, A.L. Hartig¹¹, C. Henrich¹¹, I. Homm¹¹, C. Sürder¹¹, H.B. Rhee¹¹, ... R. Gernhauser¹², C. Berner¹², ... M.P. Carpenter¹³, S. Zhu¹³, ... M. Kowalska¹⁴ N. Marginean¹⁵, R. Marginean¹⁵, R. Lica¹⁵, C. Clisu¹⁵, ... $C.A.Ur^{16}$ D. Mücher¹⁷, ... K. Wimmer¹⁸, ... R. Janssens¹⁹, ... ¹Università degli Studi di Milano, Via Celoria 16, 20133, Italy ² INFN, sezione di Milano, Italy ³ The Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland ⁴ Heavy Ion Laboratory, University of Warsaw, Poland ⁵ University of Padova and INFN sez. Padova, Italy ⁶ Legnaro National Laboratory, Italy ⁷ Instituut voor Kern-en Stralingsfysisca, K.U.Leuven, Belgium ⁸ Université libre de Bruxelles, Belgium 9 CSNSM, Orsay, France ¹⁰ Institut fur Kernphysik der Universitat zu Koln, Germany ¹¹ TU Darmstadt, Germany ¹² TU Munchen, Germany ¹³ Argonne National Laboratory, USA ¹⁴ ISOLDE, CERN, Switzerland ¹⁵ IFIN-HH, Bucharest, Romania ¹⁶ ELI-NP, Bucharest, Romania ¹⁷ University of Guelph, Canada ¹⁸ Tokyo University, Japan ¹⁹ University of North Carolina at Chapel Hill, USA

Spokespersons: S. Leoni, B. Fornal (Silvia.Leoni@mi.infn.it, Bogdan.Fornal@ifj.edu.pl) Local contact: Karl Johnston (karl.johnston@cern.ch)

Aim of the experiment

In the experiment IS595, we have proposed to investigate, with MINIBALL coupled to T-REX, the structure of one-valence-proton ¹³³Sb nucleus, and use the obtained information to validate the newly developed "Hybrid Configuration Mixing" model (HCM), which should allow an unprecedently precise description of excitations in nuclei with one or few valence nucleons. Excited states in ¹³³Sb will be populated in the reaction of a ¹³²Sn beam on a ⁷Li target by using transfer of a triton into ¹³²Sn, followed by the emission of an alpha particle (detected in T-REX) and 2 neutrons. The aim of the experiment is to locate states arising from the coupling of the valence proton of ¹³³Sb to the collective low-lying phonon excitations of ¹³²Sn (in particular the 2+, 3- and 4+), as well as to simpler core excitations, involving few nucleons only. According to calculations performed with HCM model, these states lie in the 4 – 5 MeV excitation energy region and in the spin interval 1/2 - 19/2, i.e., in the region populated by the cluster transfer reaction. The results will be used to perform advanced tests of the HCM model, which takes into account couplings between core excitations (both collective and non-collective) of the doubly magic nucleus ¹³²Sn and the valence proton.

In the considered reaction, also the one-valence-proton and one-valence-neutron nucleus ¹³⁴Sb will be produced in a transfer of triton into ¹³²Sn, followed by the emission of an alpha particle and one neutron. In this case, a very detailed test of effective proton-neutron interactions above Z=50 and N=82 will be possible by locating multiplets of proton-neutron states and comparing them with the results of shell-model calculations employing realistic interactions.

Predictions for the reaction mechanism, the expected statistics and the observed γ transitions are based on the experience gained in a test experiment performed by this collaboration at REX-ISOLDE in November 2012, in preparation of the present research program.

*The experiment was scheduled in November 2018. Few days before running, the experiment was cancelled, as a consequence of severe difficulties in providing the*¹³²*Sn beam.*

Requested shifts: 21 shifts (split into 1 run over 1 year)

Developments which occurred in the period after the approval of the experiment (i.e., in the years 2014-2019) and strengthened the proposed case

• <u>Proving potential of the cluster transfer reactions induced by radioactive beams on a ⁷Li target in populating yrast and non-yrast states in neutron-rich nuclei</u>

In 2015, the collaboration has published the results of a short, preparatory experiment performed with MINIBALL+T-REX at REX-ISOLDE in November 2012, in which triton-transfer reactions induced by ⁹⁸Rb and ⁹⁸Sr beams on a ⁷LiF target were used to populate low-lying excitations in ⁹⁹Sr and ⁹⁹Y neutron-rich nuclei (S. Bottoni et al., Phys. Rev. C 92, 024322 (2015)). At the same time, alpha-transfer process lead to excited states in ¹⁰⁰Y and ¹⁰⁰Zr neutron-rich systems. As shown in Figure 1 and 2, measured cross sections were of the order of 10 and 2 mb/sr, for t and alpha transfer, respectively, and were found to be consistent with the population of medium-high spins, in the 10-25 \hbar range. The work shows the validity of the transfer-cluster reactions for accessing excited structures at low and medium spins. In the current proposal, the nuclei of interest, ¹³³Sb and ¹³⁴Sb, will be similarly populated by the cluster-transfer reaction with a ⁷LiF target, 1.5 mg/cm²-thick, bombarded by the HIE-ISOLDE radioactive beam of ¹³²Sn at 510 MeV (about 3.9 MeV/A, corresponding to 3.5 MeV/A at mid-target).

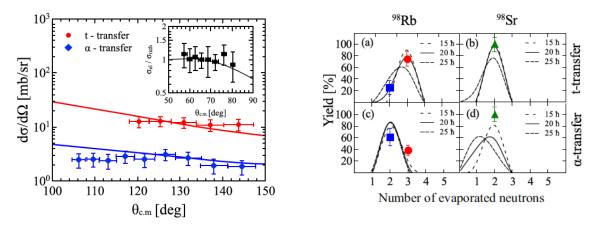


Figure 1. Results obtained from the short test experiment performed with MINIBALL+T-REX (Bottoni et al., Phys. Rev. C 92, 024322 (2015)). Left: Angular distribution for t (red symbol) and α (blue diamonds) transfers on ⁹⁸Rb compared with theoretical calculations performed with the code FRESCO (solid lines), following the reaction ⁹⁸Rb (2.85 MeV/nucleon)+ ⁷Li, performed at REX-ISOLDE in 2012. Inset: ratio between the elastic and the Rutherford cross sections as a function of the ⁷Li scattering angle. Right: Experimental yield of neutron evaporation for both t and α transfers on the ⁹⁸Rb and ⁹⁸Sr beam components compared with CASCADE predictions for different spin distributions. Panels (a) and (b) show the experimental data corresponding to t transfer, panels (c) and (d) correspond to α -transfer channels. Squares (blue) and triangle (green) symbols correspond to 2n evaporation, dots (red) refer to 3n channels.

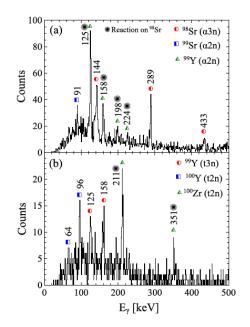
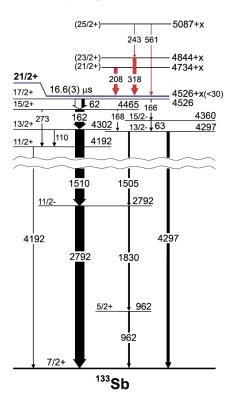



Figure 2. Results obtained from the short test experiment performed with MINIBALL+T-REX (Bottoni et al., Phys. Rev. C 92, 024322 (2015)). Particle-gated γ -ray spectra for cluster transfer channels followed by neutron evaporation for reactions on both ⁹⁸Rb and ⁹⁸Sr beam components. (a) α - γ coincidence data corresponding to the t-transfer channel. (b) t- γ coincidence spectra corresponding to the α -transfer channel.

• Identification of yrast states above the us isomer in ¹³³Sb, crucial for the study presented here

Our collaboration has studied high-spin yrast states in the nucleus ¹³³Sb, object of the present ISOLDE approved proposal, taking advantage of a large data set collected in 2013 for products of neutron-induced fission on ²³⁵U and ²⁴¹Pu targets, during the EXILL campaign at ILL (Grenoble). The data analysis allowed to identify four new transitions feeding the 16.6 μ s isomer as shown in Fig. 3 (G. Bocchi et al., Phys. Lett. B 760 (2016) 273–278). They can now serve as starting points to extend the ¹³³Sb level scheme further up in excitation energy, when the data from the cluster-transfer reaction ¹³²Sn + ⁷Li, proposed at ISOLDE, will be available. The new

information will be crucial to validate the predictions of the recently developed Hybrid Configuration Mixing model (see below), which allows to calculate excited states of one-valence particle/hole nuclei taking into account collective (phonon) and non-collective excitations of the doubly-magic core.

Figure 3. Experimental level scheme of ¹³³Sb: in black, the decay below the long lived $21/2^+$ isomer. Transitions marked in red, feeding the isomer, were found by our collaboration in the EXILL campaign (G. Bocchi et al., Phys. Lett. B 760(2016)273–278.

• Progress in theory

The theory members of the Milano group, participating in this project, have recently developed a new approach called "Hybrid Configuration Mixing" (HCM) model, which allows to describe complex excitations in one-valence particle/hole nuclei around doubly magic systems (G. Colò, P. F. Bortignon, and G. Bocchi, Phys. Rev. C95, 034303 (2017)). The model is a first step towards a complete self-consistent description of low-lying excitations of odd nuclei. It does not contain any free adjustable parameter and it is based on a Hartree-Fock (HF) description of the particle states in the core, together with self-consistent randomphase approximation (RPA) calculations for the core excitations. As a consequence of this approach, different types of states can be addressed: i) states arising from single nucleon excitations, ii) multiplets of states based on couplings between particle and collective phonons of the core, as well as iii) states of shell-model types, like 2 particles–1 hole. In heavy mass systems (e.g., around ¹³²Sn), such complex types of excitations cannot be fully treated within a standard shell model (SM) approach, as it would require full SM calculations in the configuration space that encompasses proton and neutron orbitals below and above ¹³²Sn (D. Lacroix, International Joliot-Curie School (EJC2009), arXiv:1001.5001 [nucl-th], 2009; SciDAC Rev. 6 (2007) 42).

Figure 4 shows predictions of the HCM model for ¹³³Sb, for states of single particle character (black) and for excitations arising from the coupling of the unpaired proton with either 2+,3-,4+ collective phonons of the ¹³²Sn core (blue), as well as non collective particle-hole excitations of ¹³²Sn (green). Red symbols refer to known experimental states. It is seen that the model predicts a number of states in the 4-5 MeV region, which we aim to probe by the cluster-transfer reaction ¹³²Sn+⁷Li, here proposed at ISOLDE.

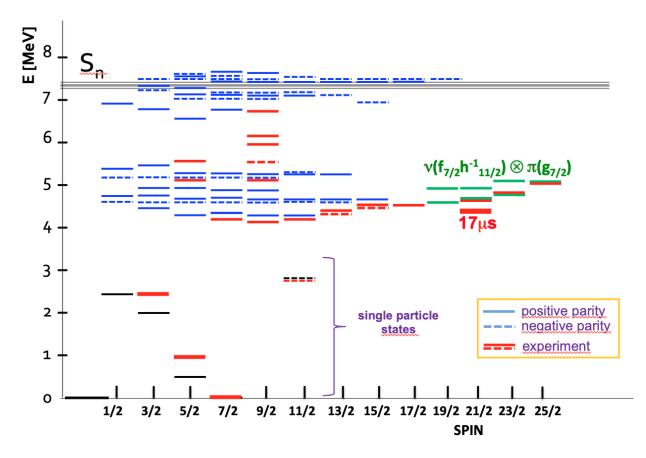


Figure 4. Predictions obtained from the Hybrid Configuration Mixing (HCM) model of G. Colò et al. for different types of excitations in ¹³³Sb, namely i) states of single particle nature (black) and states based on couplings of the unpaired proton with ii) 2^+ , 3- and 4^+ phonon excitations of the ¹³²Sn core (blue) and iii) non collective particle-hole excitations of 1^{132} Sn (green). Known experimental states are marked in red. Solid and dashed lines refer to positive and negative parity states, respectively (G. Colò, P. F. Bortignon, and G. Bocchi, Phys. Rev. C95, 034303 (2017)).

In recent years, calculations for proton-neutron valence particle excitations in ¹³⁴Sb became available to our collaboration, from the Napoli theory group (A. Gargano et al.). They are obtained with shell model using a realistic (V_{low-k}) interaction. As shown in Figure 5, the calculations predict multiplets of states extending up to 6 MeV excitation energy, which could provide a very specific test of effective proton-neutron interactions above Z=50 and N=82. Experimentally, only few states, at the lowest energies are known. A large fraction of these types of excitations, are expected to be located in the here proposed ¹³²Sn+⁷Li experiment.

• Competitiveness of the proposed experiment at ISOLDE

The neutron-rich ^{133,134}Sb nuclei will be populated by the cluster-transfer reaction with a ⁷LiF target, 1.5 mg/cm²-thick, bombarded by the HIE-ISOLDE radioactive beam of ¹³²Sn at 510 MeV (about 3.9 MeV/A, corresponding to 3.5 MeV/A at mid-target). The reaction channels of interest are uniquely associated with emission of an α particle. By detecting this α particle, we will be able to produce a very clean trigger of the ⁷Li(¹³²Sn, α xn γ) processes. Moreover, the very inverse kinematics guarantees that the product nuclei all travel downstream in a very small recoil cone, thus Doppler reconstruction of the γ -ray data does not require, to first approximation, recoil detection. These two distinct features will greatly facilitate the detection of the discrete γ

rays and their identification, as demonstrated by the REX-ISOLDE test case with the ⁹⁸Rb beam, discussed above (*(Bottoni et al., Phys. Rev. C 92, 024322 (2015)*).

The here proposed experiment will provide the first example of extended spectroscopic studies of neutron-rich nuclei using heavy-ion (cluster)-transfer reactions induced by a low-energy radioactive beam. Therefore, in addition to the main goal of the proposal (i.e., elucidation of the structure of ^{133,134}Sb nuclei), the experiment is expected to provide a benchmark for future investigations relying on this type of reaction mechanisms, which has been proposed in several Letters of Intent at ISOL facilities.

The experiment can only be done at an ISOL facility able to provide an accelerated ion beam of 132 Sn, with intensity of the order of $\sim 10^5 \cdot 10^6$ pps. In recent years, such a beam could only be produced at ISOLDE, and it will take few more years before this beam will be available in other facilities, such as SPES at the Legnaro National Laboratory of INFN (Italy).

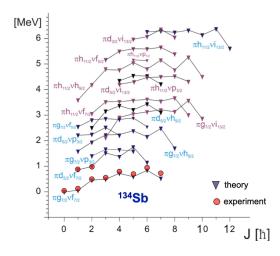


Figure 5. Predictions obtained from the shell model with realistic (Vlow-k) interaction, for valence protonneutron excitations in ¹³⁴Sb (A. Gargano et al., private communications). Calculated states are given by triangles, presently available experimental data are indicated by red circles.

Appendix

DESCRIPTION OF THE PROPOSED EXPERIMENT

The experimental setup comprises: (name the fixed-ISOLDE installations, as well as flexible elements of the experiment)

Part of the Choose an item.	Availability	Design and manufacturing	
HIE-ISOLDE	Existing	To be used without any modification	
MINIBALL + T-REX	Existing	To be used without any modification	
		🗌 To be modified	
	New 🗌	Standard equipment supplied by a manufacturer	
		CERN/collaboration responsible for the design and/or	
		manufacturing	

HAZARDS GENERATED BY THE EXPERIMENT

(if using fixed installation) Hazards named in the document relevant for the fixed [MINIBALL + T-REX] installation.

Additional hazards:

Hazards	HIE-ISOLDE	MINIBALL + T-REX	[Part 3 of the experiment/equipment]	
Thermodynamic and fluid	lic			
Pressure	[pressure][Bar], [volume][I]			
Vacuum				
Temperature	[temperature] [K]			
Heat transfer				
Thermal properties of				
materials				
Cryogenic fluid	[fluid], [pressure] [Bar], [volume] [l]			
Electrical and electromagnetic				
Electricity	[voltage] [V], [current][A]			
Static electricity				
Magnetic field	[magnetic field] [T]			
Batteries				
Capacitors				
Ionizing radiation				
Target material	[material]	Secondary target: LiF ₄ foil 1.5 mg/cm ²		
Beam particle type (e, p, ions,	Heavy ions:	Heavy ions:		
etc)	tuning and calibrations :	tuning and calibrations :		
	stable Sn, ²² Ne	stable Sn, ²² Ne		
	Measurement : ¹³² Sn	Measurement : ¹³² Sn		
Beam intensity	max 1 nA	max 10 pA (after EBIS)		
	(injection plate REXTRAP)			
Beam energy		3.9 MeV/nucleon		
Cooling liquids	[liquid]			
Gases	[gas]			
Calibration sources:		🛛 Standard alpha- and		
		gamma-calibration sources		

		from ISOLDE	
Open source			
Sealed source	[ISO standard]		
Isotope			
Activity			
Use of activated material:			
Description			
Dose rate on contact	[dose][mSV]		
and in 10 cm distance			
Isotope			
Activity			
Non-ionizing radiation	•	·	·
Laser			
UV light			
Microwaves (300MHz-30			
GHz)			
Radiofrequency (1-300MHz)			
Chemical			
Toxic	[chemical agent], [quantity]		
Harmful	[chemical agent], [quantity]		
CMR (carcinogens, mutagens	[chemical agent], [quantity]		
and substances toxic to			
reproduction)			
Corrosive	[chemical agent], [quantity]		
Irritant	[chemical agent], [quantity]		
Flammable	[chemical agent], [quantity]		
Oxidizing	[chemical agent], [quantity]		
Explosiveness	[chemical agent], [quantity]		
Asphyxiant	[chemical agent], [quantity]		
Dangerous for the	[chemical agent], [quantity]		
environment			
Mechanical	1	1	
Physical impact or	[location]		
mechanical energy (moving			
parts)	F1 1		
Mechanical properties	[location]		
(Sharp, rough, slippery) Vibration	[location]		
Vibration Vehicles and Means of	[location]		
Transport	liocation]		
Noise	l		
Frequency	[frequency],[Hz]		
Intensity	[1	
Physical	1	1	l
Confined spaces	[location]		
High workplaces	[location]		
Access to high workplaces	[location]		
Obstructions in passageways	[location]		
Manual handling	[location]		
Poor ergonomics	[location]		
	liocation		

0.1 Hazard identification

3.2 Average electrical power requirements (excluding fixed ISOLDE-installation mentioned above): (make a rough estimate of the total power consumption of the additional equipment used in the experiment) ... kW