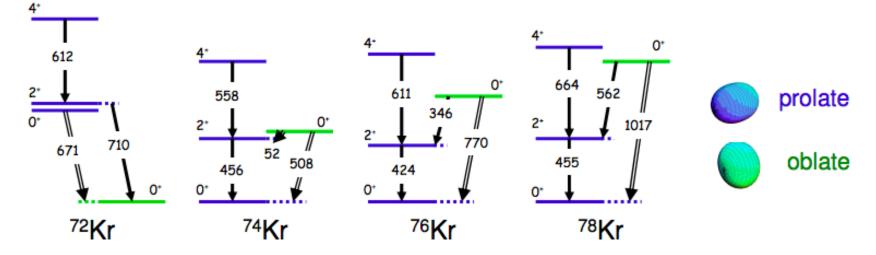
Probing Shape Coexistence in neutrondeficient ⁷²Se via Low-Energy Coulomb Excitation

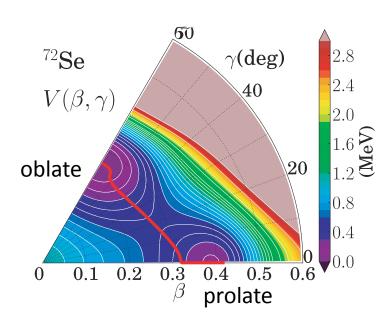
Status Report

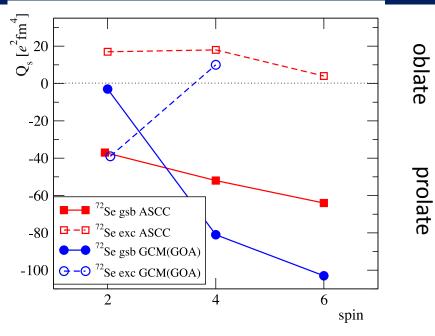
Daniel Doherty on behalf of the IS597 collaboration


61st Meeting on the INTC

(2nd July 2019)

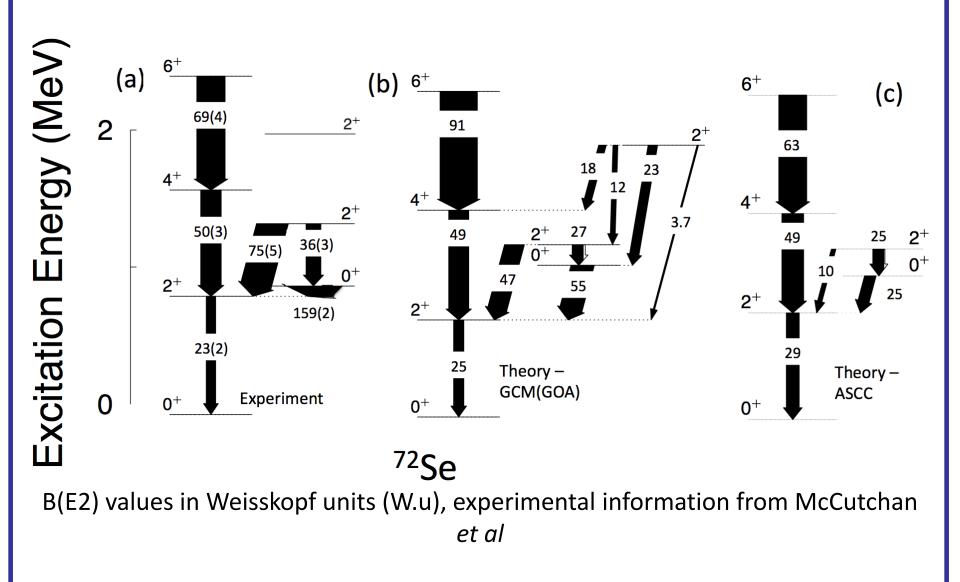
Coexisting Shapes in the A = 70 Region


- States of different deformation observed within a very small energy range (typically a few hundred keV).
- In the A ≈ 70 region, the neutron-deficient Kr isotopes are a good example (see below, direct and indirect information).


• Situation even less well understood and likely more complex for Se isotopes.

E. Clément *et al.*, Phys. Rev. C. **75**, 054313 (2007). A. Gade *et al.*, Phys. Rev. Lett. **95**, 022502 (2005).

Motivation for ⁷²Se (1) - Shapes

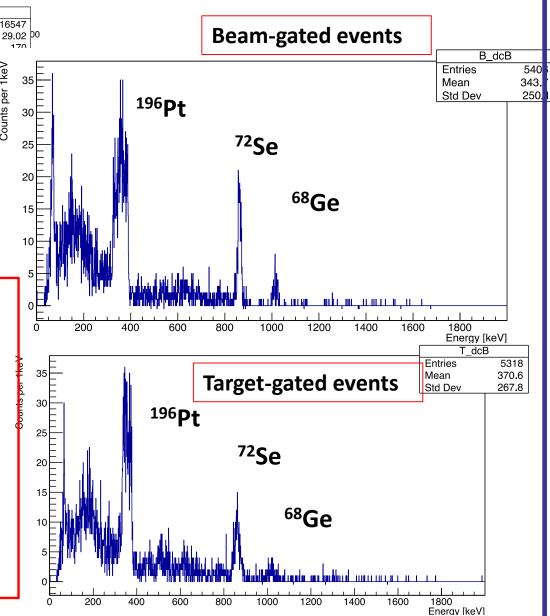

- Potential energy map for ⁷²Se, calculated with ASCC calculations.
- Ground state predicted to have a maximum at oblate deformation but extends to prolate region.
- Similar predictions for GCM(GOA) calculations

- Theoretical quadrupole moments (QM) for states in the groundstate and excited bands in ⁷²Se.
- Both ASCC and GCM(GOA) approaches predict increasing prolate deformation moving up the GSB.
- Calculations in disagreement for band built on 0⁺₂ level.

N. Hinohara *et al.* Phys. Rev. C **80**, 014305 (2009) and N. Hinohara *et al.* Phys. Rev. C **82**, 064313 (2010). J. P. Delaroche, Private Communication (2014).

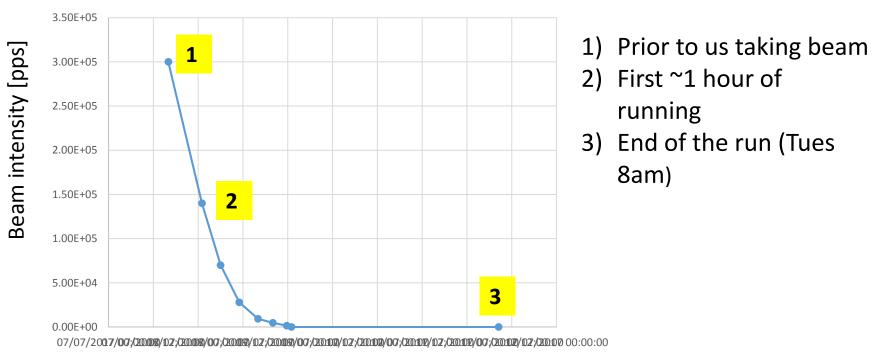
Motivation for ⁷²Se (2) – Transitional MEs

E. A. Mc Cutchan *et al.,* Phys. Rev. C. **83**, 024310 (2011).


Motivation for ⁷²Se (3) – Summary

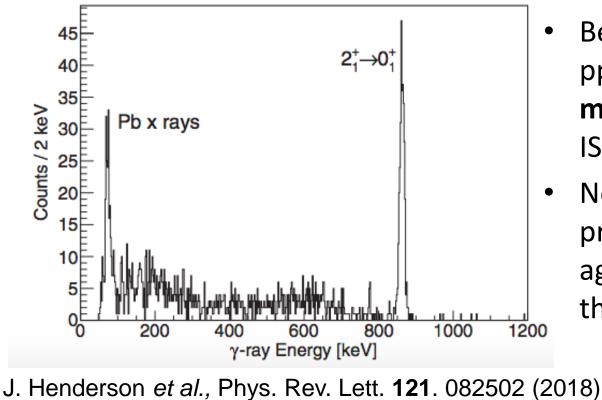
- Previous slides focussed on beyond-mean-field and ASCC calculations but, in addition, interesting and conflicting results from shell model (K. Kaneko *et al.*, Phys. Rev. C 92, 044331 (2015).) and IBM (E. A. McCutchan et al., Phys. Rev. C 83, 024310 (2011)).
- Key information from Coulomb excitation required to test and benchmark calculations in this key and challenging region in order to shed light on, e.g.
 - Location of prolate-oblate shape transition and role of non-axial degree of freedom
 - Shape coexistence and mixing between structures

Summary of IS597 running period in 2017


Detected particle events part Energy [MeV] 320 Entries 216547 Mean x ⁷²Se + ⁶⁸Ge Mean y RMS x 1keV RMS v 250 Counts per 196**Pt** 200 150 100 ³⁸Ar. ¹⁹F 50 55 Lab angle [d 20 25 30 35 40 45 50

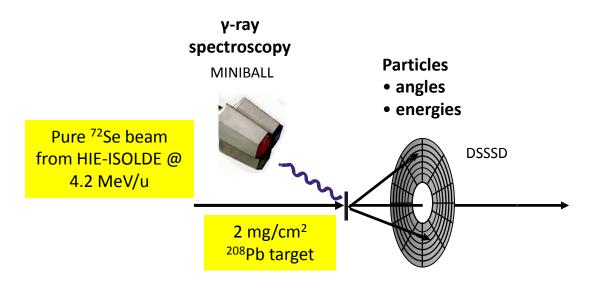
- Promising data but only ~5% of requested ⁷²Se delivered to Miniball
- Extraction of ⁷²SeCO molecule extremely problematic
- Unexpected ⁶⁸Ge contamination

Issues with 2017 Experiment


72Se beam intensity @ Miniball

- Molecular extraction of ⁷²SeCO
- Used a VADIS ion source (molybdenum) rather than a FEBIAD (carbon) one.

2018 NSCL Study


- ⁷²Se beam was produced following the fragmentation of a 150 MeV/u ⁷⁸Kr beam at NSCL.
- Stopped in a **linear gas stopper**, thermalized, charge bred and then injected into the ReA3 accelerator chain.

- Beam intensity ~ 4000 pps (two orders of magnitude less than ISOLDE)
- Negative Q(2⁺₁) => prolate deformation (in agreement with most theoretical calculations)

Goals for Remaining Shifts

- Perform a low-energy Coulomb excitation measurement which will enable
 - Determination of a number of transitional matrix elements.
 - Quadrupole moments of $\underline{2_1}^+$, 2_2^+ and 4_1^+ states to be determined.
 - Shapes of the ground state and 0⁺₂ state to be determined via the Quadruple Sum Rules method.
 - Verify the lifetimes of the 0⁺₂ and 2⁺₂ states through their B(E2) values.
- Utilise standard Coulex setup. MINIBALL in conjunction with CD silicon detector.

TAC Comments/ Questions

- ⁷²Se at TRIUMF: Yield measurement in 2016 of 1.3 x 10⁶ pps at the target. Charge-breeding and post-acceleration efficiency of 0.1% => 1 x 10³ pps at Coulomb-excitation setup.
- Formation of ⁷²SeCO molecules still not understood but likely related to the choice of ion source.
- Cold irradiation and then ionisation with either RILIS, VADIS or VADLIS suggested by TAC => seems a promising alternative as other potential A ~70 contaminants are short lived.

TAC Comments/ Questions

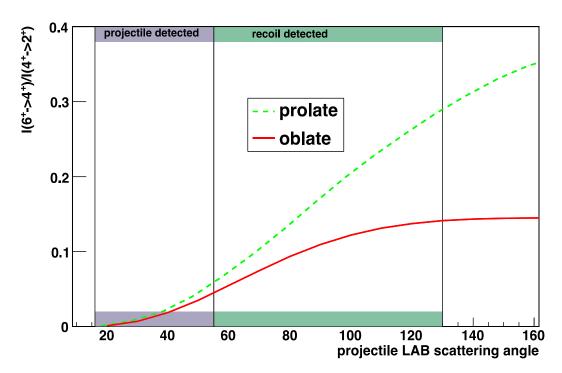
- ⁷²Se at TRIUMF: Yield measurement in 2016 of 1.3 x 10⁶ pps at the target. Charge-breeding and post-acceleration efficiency of 0.1% => 1 x 10³ pps at Coulomb-excitation setup.
- Formation of ⁷²SeCO molecules still not understood but likely related to the choice of ion source.
- Cold irradiation and then ionisation with either RILIS, VADIS or VADLIS suggested by TAC => seems a promising alternative as other potential A ~70 contaminants are short lived.

We request the remaining 9 shifts with a 305-MeV ⁷²Se beam (using both ¹⁹⁶Pt and ²⁰⁸Pb targets) at a minimum intensity of 2 x 10⁵ pps in order to perform this experiment.

Thank you for your attention

61st Meeting on the INTC

(2nd July 2019)


Expected Yields

 Expected yields calculated with the computer code GOSIA following the Coulomb excitation of a 305 MeV ⁷²Se beam (of average intensity 2 x 10⁵ pps) incident on a 2 mg/cm² ²⁰⁸Pb target.

Transition	Multipolarity	E _v [keV]	Predicted Yield	Minimum Yield
			[counts/day]	[counts/day]
$2^{+}_{1} \rightarrow 0^{+}_{1}$	E2	862	17470	
$4^{+}_{1} \rightarrow 2^{+}_{1}$	E2	775	960	
$6^{+}_{1} \rightarrow 4^{+}_{1}$	E2	830	75	
$8^{+}_{1} \rightarrow 6^{+}_{1}$	E2	958	6	
$0^+_2 \rightarrow 2^+_1$	E2	75	325	135
$2^+_2 \rightarrow 2^+_1$	E2/M1	455	200	160
	$\delta = +11^{+11}_{-4}$			
$2^{+}_{2} \rightarrow 0^{+}_{2}$	E2	379	35	
$2^{+}_{2} \rightarrow 0^{+}_{1}$	E2	1317	235	
$2^+_3 \rightarrow 2^+_1$	E2/M1	1137	50	25
	$\delta = -8^{+3}_{-12}$			
$2^{+}_{3} \rightarrow 0^{+}_{2}$	E2	937	25	
$3_{1}^{-} \rightarrow 2_{2}^{+}$	E1	1117	15	

Sensitivity to Quadrupole Moments (QM)

- Figure shows the ratio of the calculated intensity of the 6⁺→ 4⁺ transition to the 4⁺ → 2⁺ transition as a function of projectile scattering angle for two choices of QM, which correspond to prolate and oblate deformations of the 4⁺₁ level, respectively.
- Demonstrating the sensitivity of the method for determining QMs

