



UPPSALA UNIVERSITET



Funded by the Horizon 2020 Framework Programme of the European Union

# **Progress of the ESSnuSB** accumulator design

Ye Zou, Uppsala University, on behalf of the ESSnuSB WG3







# Main parameters

| Parameters                                  | ESSnuSB 28 Hz<br>old  | ESSnuSB 28 Hz<br>new  | ESSnuSB (70 Hz,<br>50 mA) | SNS (1.4 MW)         |
|---------------------------------------------|-----------------------|-----------------------|---------------------------|----------------------|
| Beam power on target (MW)                   | 4.03                  | 5                     | 5                         | 1.4                  |
| Beam energy (GeV)                           | 2                     | 2.5                   | 2.5                       | 1.0                  |
| Beam intensity (ppp)                        | $2.75 \times 10^{14}$ | $2.23 \times 10^{14}$ | $2.23 \times 10^{14}$     | $1.5 \times 10^{14}$ |
| Average macro-pulse beam current (mA)       | 62.5                  | 62                    | 50                        | 25                   |
| Pulse repetition rate (Hz)                  | 28                    | 28                    | 70                        | 60                   |
| Macro-pulse length (ms)                     | 0.64                  | 0.64                  | 0.79                      | 1                    |
| Pulse length after accumulation ( $\mu$ s)  | 1.22                  | 1.2                   | 1.2                       | 0.7                  |
| Accumulation turns                          | 474                   | 481                   | 597                       | 1070                 |
| Bunching factor                             | ~0.4                  | ~0.9                  | ~0.9                      | 0.25                 |
| Un-norm. painted beam emittance $\pi$ mm-mr | 100                   | 60                    | 60                        | 300                  |
| Space charge tune shift                     | -0.05 to -0.1         | -0.022 to -0.044      | -0.022 to -0.044          | -0.15                |

## Lattice and tune

#### Developed by Horst Schonauer





Ye Zou, Uppsala

# H<sup>-</sup> injection

### H<sup>-</sup> injection (foil stripping; following laser stripping development)

H<sup>-</sup> beam passes through a thin foil, 2 electrons stripped by the foil to make H<sup>-</sup> become proton

#### **Transverse injection painting**

- Painting beam can reduce space charge effect, and mitigate peak foil temperature
- Vary position of circulation beam at the foil by programming orbit bumps (H and V) in a dispersion-free region



# Foil stripping efficiency

- Stripping efficiency is a function of foil material, foil thickness, foil density, beam species, and beam energy
- As the stripping foil thickness increases:
  - The fraction of the beam that is fully stripped increases (good)
  - The scattering of the injected and circulating beam also increases (bad)
  - The energy deposited in the foil increases, which can overheat and damage the foil (bad)
- Specifying the optimum foil thickness is a balancing act between the stripping efficiency, the scattering, and foil heating
- If stripping efficiency > 99%, thickness >500  $\mu g/cm^2$  ,  $f(H^0) < 1\%, \ f(H^-) < 2 \times \ 10^{-6}$
- As an comparison: SNS  $\sim 300~\mu g/cm^2$  , injection energy 1 GeV;



H- stripping cross section scaled from M.S. Gulley et al., Phys. Rev. A 53 (1996) 3201

W. Chou et al., Proceedings of PAC07, Albuquerque, New Mexico, USA, p1679

# Configurations for simulation

- Lattice developed by Horst Schonauer
- Simulation tools: PTC-PyORBIT
- Linac beam: Gaussian distribution in transverse plane and uniform in longitudinal
- Energy spread in Gaussian distribution
- On-momentum matched beam injection
- RF cavity: no RF cavity, dual harmonic RF cavity, barrier RF cavity
- Both direct and indirect space charge included
- Foil scattering included
- Chromaticity not corrected
- Correlated and anti-correlated painting

| <b>Basic parameters for simulations</b>    | Value                  |  |
|--------------------------------------------|------------------------|--|
| Hor./Ver. Norm. rms emittance              | 0.35 mm mrad           |  |
| Extraction gap                             | 133 ns                 |  |
| Energy spread, 1 sigma                     | 0.02%                  |  |
| Foil thickness                             | 500 µg/cm <sup>2</sup> |  |
| Hor./Ver. beta function at injection point | 10 m/ 20 m             |  |
| Hor./Ver. tune                             | 8.24/8.31              |  |
| Injection turns                            | 481                    |  |
| Macro particles per turn                   | 300                    |  |
| Pulse length per turn                      | 1.2 μs                 |  |
| Beam intensity per turn                    | 4.7×10 <sup>11</sup>   |  |
| Dual-Harmonic RF voltage                   | 5 kV/-2.5 kV           |  |
| Barrier RF voltage                         | 5 kV                   |  |
| Barrier RF phase                           | 162 deg                |  |

# Bump function





5

0 <sup>\_</sup> 0

0.2

0.1

0.3

τε Ζου, ορρβαία όπινει στιν

0.4

t (ms)

0.5

0.6

0.7

#### Case #3



#### Case #6



2019-10-22

0

0

0.1 0.2

0.3

t (ms)

0.4

0.5

0.6 0.7

### Beam distribution in transverse phase space (correlated painting)

#### Less painting



#### Well painting



#### Over painting



8

### Beam distribution in real space (correlated painting)

Less painting







#### Well painting

Over painting



9

### Beam distribution with anti-correlated painting (well painting)







### RF cavity and longitudinal beam distribution

Two main points

*Point 1: Keep extraction gap clean during the whole accumulation process Point 2: Minimize the energy spread* 

#### Dual Harmonic RF cavity (Low voltage, 5kV)







- Beam is quite stiff
- Particles leakage to the gap would be possible without RF cavity
- Small risk to leak and small energy spread if dual harmonic rf cavity with low voltage (~5kV)
- Very small risk to leak and very small energy spread if barrier rf cavity implemented

## Tune and Emittance (correlated painting)



- Very small tune spread ( $\sim 0.05$ ), which fits the calculation results
- 99.7% beam emittance: about 60  $\pi$  mm mrad in horizontal and 61  $\pi$  mm mrad in vertical plane
- RMS emittance: 13.5  $\pi$  mm mrad in horizontal and 14.5  $\pi$  mm mrad in vertical plane

## Tune and Emittance (anti-correlated painting)



- Very small tune spread ( $\sim 0.05$ ), which fits the calculation results
- 99.7% beam emittance: 59  $\pi$  mm mrad in horizontal and 60  $\pi$  mm mrad in vertical plane
- RMS emittance: 12.9  $\pi$  mm mrad in horizontal and 12.5  $\pi$  mm mrad in vertical plane



# Beam foil-hits distribution

Corr. painting

Anti-corr. painting



2019-10-22

# Foil temperature calculation

- A simple MATLAB code is developed to estimate foil temperature
  - Radiative cooling is considered, assuming no cooling via conduction
  - Carbon foil is chosen and the emissivity is chosen to be 0.8
  - Heat capacity is from: C.J.Liaw 1999, http://accelconf.web.cern.ch/Accelconf/p99/PAPERS/THP143.PDF
  - Electrons contribution on the foil heating is also taken into account, 0.84 reduction due to knock-on electrons according to Mike Plum's studies
  - Code benchmark with SNS results when inputting SNS configurations
- Several methods are considered to mitigate the peak temperature on the foil:
  - Optimizing the bump function can mainly decrease the peak foil temperature at inner corner
  - Splitting the foil into several thinner ones with the same total thickness can lower the peak temperature at both center and corner if the foils are separated with enough distance in order to minimize the affect between each other
  - Moving injection point or adopting several foils along horizontal plane is also considered

### Code benchmark with SNS results



J. Beebe-Wang et.al., BNL, proceedings of 2001 PAC Chicago, USA

| Hits density<br>(hits/(p mm²) | SNS results<br>(K) | Code results<br>(K) |
|-------------------------------|--------------------|---------------------|
| 0.2                           | ~1660              | 1645                |
| 0.4                           | ~2300              | 2244                |
| 0.6                           | ~2750              | 2742                |
| 1.0                           | ~3500              | 3500                |



## Foil temperature (correlated painting, 28 Hz)

#### Not optimized

#### Optimized



- Optimizing bump function can lower foil temperature at inner corner very efficiently
- Several-thinner-foils scheme is an effective way to mitigate the maximum temperature issue on the foil.

## Foil temperature (anti-correlated painting, 28 Hz)



# With different number of thinner foils

| # of thinner<br>foils | Thickness of each<br>foil (ug/cm <sup>2</sup> ) | <b>Correlated painting</b> |                           | Anti-correlated painting  |                           |
|-----------------------|-------------------------------------------------|----------------------------|---------------------------|---------------------------|---------------------------|
|                       |                                                 | Temperature at center (K)  | Temperature at corner (K) | Temperature at center (K) | Temperature at corner (K) |
| 1                     | 500                                             | 2979                       | 2502                      | 3148                      | 2562                      |
| 2                     | 250                                             | 2631                       | 2255                      | 2749                      | 2298                      |
| 3                     | 167                                             | 2427                       | 2103                      | 2534                      | 2138                      |
| 4                     | 125                                             | 2284                       | 2002                      | 2378                      | 2039                      |
| 5                     | 100                                             | 2175                       | 1914                      | 2250                      | 1947                      |
| 6                     | 83                                              | 2088                       | 1853                      | 2157                      | 1883                      |
| 7                     | 71                                              | 2016                       | 1789                      | 2091                      | 1818                      |
| 8                     | 63                                              | 1945                       | 1747                      | 2015                      | 1773                      |
| 9                     | 56                                              | 1892                       | 1703                      | 1970                      | 1722                      |
| 10                    | 50                                              | 1855                       | 1665                      | 1915                      | 1689                      |

## Foil temperature (correlated painting, 70 Hz, optimized)



## Summary and outlook

#### Where we are now:

- Paint to quite uniform distributions with 100% emittance  $\sim 60 \pi$  mm mrad
- Space charge tune shift: ~0.03
- Extraction gap kept clean well
- Foil temperature issues can be mitigated in several ways and still in progress

### What we plan to do

- Collimation system design
- Chromaticity correction
- Dynamic aperture studies

# Back-up slides



## **Resonance and superperiods**



- Tune spread induced by space charge effect, natural chromaticity, and magnet imperfection is unavoidable.
- Tune spread should be far from each order of resonance, in particular, low order resonance (<=3) due to possible beam loss
- Space-charge tune shift requirement: < 0.2
- Transverse resonance condition:

 $mv_x + nv_y = iN$ m,n,i,N integers, l = |m| + |n| is the order of resonance,

N is superperiodicity number.

- If *N*=1, black and blue lines;
- if *N*=4, only blue lines
- A higher superperiodicity is better

### Convergence study



300 macro particles per turn for injection is good enough for numerical simulation.

Ye Zou, Uppsala University

### Demonstration of Laser stripping for microsecond H<sup>-</sup> duration

- Reduce the required average laser power by 3 orders of magnitude:
  - Temporal matching of the laser pulse to the H– pulse structure (factor 70)
  - Tailoring of the H– beam trajectories (factor 10)
  - Optimization of H– beam size and divergence (factor 2-5)
- The achieved stripping efficiencies are comparable to the foilbased stripping schemes of about 95% – 98%
- Duration of the laser stripping event is still 2 orders of magnitude below typical millisecond operational pulse lengths (ESSnuSB 2.86/4 ms)
- Possible for millisecond pulse: using cavity to recycle the laser power to reduce the required average laser power

#### Sarah Cousineau et al., PRL 118, 074801 (2017)



