An Introduction to
Reinforcement Learning

Dr Ing. Gianluca Valentino

Department of Communications and Computer Engineering

L-Universita
ta' Malta

University of Malta

| @,.06r0 S2019

Outline

* What is Reinforcement Learning?

* RL terminology: states, actions, reward, policy
* Value function and Q-value function

* Q-learning and neural networks

* Python notebooks: Grid World and Cart Pole

What is Reinforcement Learning?

* So far: Supervised Learning
e Data: (X, v)
* Goal: Learn a functionto map X ->vy

» Examples: classification, regression,
object detection etc

. . Abnormal
* So far: Unsupervised Learning

* Data: X (noy)

* Goal: Learn some underlying hidden
structure in the data

 Examples: clustering, dimensionality
reduction, anomaly detection

Normal

relative density (LOF) outlier scores

. . P, =
What is Reinforcement Learning: ﬁﬁﬁﬂ

=h]=
Environment
* In Reinforcement Learning, an agent

interacts with an environment to learn Rewan
Interpreter

how to perform a particular task well.
% \@24

Agent

* How is it different to the other learning paradigms?
* There is no supervisor, only a reward.
* The agent’s actions affect the subsequent data it receives
* Feedback is delayed, and may be received after several actions

Action

Cat Agent

State: Sitting

Observable

Come here!

Reward

Stay hungry.. M ﬁ

Action: waIk

Actlon keep sitting

Examples of Reinforcement Learning

Fly a helicopter

‘ : :4 Make a robot walk

.
s
S Q
4 \
\

: \\\\\\\:\\\§\\

Play Atari games better
than humans

Rewards

* The agent receives feedback from the environment through reward
* Areward R, is a scalar feedback signal

* It is an indication of how well the agent is doing at step t

* The agent’s job is to maximise cumulative reward

e Examples:
* Winning a game
* Achieving design luminosity in a collider
* Maintaining an inverted pendulum at the top

Sequential decision making

e Goal: select actions to maximise total future reward
* Actions may have long term consequences
* Reward may be delayed

* It may be better to sacrifice immediate reward to gain more long-
term reward

e Examples:
* A financial investment (may take months to mature)

* Blocking opponent moves (might help winning probability many moves from
now)

States

e State: what the agent is observing about the environment

e Examples:
* Pixels in an image (of a game, of a driverless car, etc)
e Data from beam instrumentation in an accelerator
* The position of all pieces in a game of chess

The agent and its environment

Action a,

Reward r,
Next state s, 4

How can we formalize this mathematically?

Markov Decision Process (MDP)

* Markov property: current state
completely characterizes state of
the world.

* Defined by: (S, A, R, P, y)
* S: set of possible states
* A: set of possible actions
* R: reward for a given (state, action)
pair
* P(s,|s,.q, a,): transition probability
e y: Discount factor (usually close to 1)

SO

AO

\

Al

P

R1

R2

Markov Decision Process (MDP)

* At time step t = 0, environment samples initial state s, ~ P(s)

e Then, for t = 0 until done:
* Agent selects action a,
* Environment samples reward r,~ R(. | s, a,)
* Environment samples next states,,, “P(. | s, a,)
* Agent receives reward r, and next state s,, ;.

* A policy rtis a function which specifies what action to take by the agent in
each state.

* Objective: find a policy n* that maximizes cumulative discounted reward Z’Yt?‘t
t=>0

A simple MDP: Grid World

actions = {
1. right =»
2. left <=
3. up 1
4. down ‘
}

Objective: reach one of the terminal states
(green) with the least number of actions

A simple MDP: Grid World

+l+l

o

R

Random Policy

Optimal Policy

The optimal policy t*

* Need to find the optimal policy m* that maximizes the sum of rewards.

* To handle randomness (initial state, transition probability etc):
* Maximize the expected sum of rewards

" =argmaxE |} o'r|m| with so ~ p(s0),ar ~ m(:|s¢), 8141 ~ p(:|8¢, ar)
>0

Definitions: Value function and Q-value function

* Following a policy produces sample trajectories (or paths) s,, a,, o, S, @y,) -

* How good is a state?

* The value function at state s is the expected cumulative reward from following the
policy from state s:

V7(s) = ny T¢|8g = 8,

t>U

* How good is a state-action pair?

* The Q-value function at state s and action a, is the expected cumulative reward from
taking action a in state s and then following the policy:

=3 —

Q" (s,a) =E Zf}ft*rt\sﬂ =8,y =Q,T

t>0

Bellman equation

* The optimal Q-value function Q* is the maximum expected cumulative reward
achievable from a given (state, action) pair:

t>0
e Q* satisfies the Bellman equation:

Q*(s,a) = Eg ¢ [’r‘ + 7 max Q*(s',a’)|s, a,]
a

* Intuition: if the optimal state-action values for the next time-step Q*(s’,a’) are
known, then the optimal strategy is to take the action that maximizes the
expected value of |

r+yQ*(s',a)

e Optimal policy m* -> taking the best action in any state as specified by Q*.

Solving for the optimal policy

* Value iteration algorithm: use the Bellman equation as an iterative update:
Qi+1 (87 CL) =E {T T 7y max Qi(8,7 a’,)|83 a‘]
a

* Q will converge to Q* as i -> infinity.

learned value

e
ral Ty

Q" (stya:) < (1 —a) - Q(s¢,a¢) + &2 (»E« + v - maxQ(sy,a))
——) S~ N P
old value learning rate reward discount factor g

estimate of optimal future value

Exploration vs Exploitation

Exploration: Increase knowledge
for long-term gain, possibly at the
expense of short-term gain

Exploitation: Leverage current knowledge
to maximize short-term gain

During training, we could e.g.:
30% of the time we choose a random action
70% of the time we choose an action with the most expected value

Grid world example

e Agent starts at bottom left.

e At each step, agent has 4
possible actions (up, down,

left, right).

e Black square: agent cannot
move through it.

Start e Assume each action is
deterministic.

Grid world example

* First, define the grid world parameters:

import numpy as np

BOARD ROWS = 3
BOARD COLS = 4
WIN STATE = (0, 3)
LOSE STATE = (1, 3)
START = (2, 0)
#DETERMINISTIC = False
DETERMINISTIC = True

Grid world example

e Define the reward:

def giveReward(self):

if self.state == WIN STATE:
return 1

elif self.state == LOSE STATE:
return -1

else:

return 0

Grid world example

* Probabilistic result of taking an action:

def chooseActionProb(self, action):

"right"], p=[0.8,

"left", "right"], p=[0.

] L1

up

r

if action == "up":
return np.random.choice(["up", "left",
if action == "down":
return np.random.choice(["down",
if action == "left":
return np.random.choice(["left",
if action == "right":

return np.random.choice(["right",

L]

up

n

r

"down"], p=[0.8,

"down"], p=[0.8,

Oil’
8, 0.
0.1,

0.1,

0.17)
1, 0.1]
0.1])

0.17)

Grid world example

* Define how the state is updated
when the action is taken by the

agent.

 Need to check that the next state

is not the black box or else
outside the grid.

def nxtPosition(self, action):

momn

action:

up, down, left, right

return next position on board

mwomomn

if self.determine:

if action == "up":

nxtState = (self.state[0] - 1, self.state[l])
elif action == "down":

nxtState = (self.state[0] + 1, self.state[l])
elif action == "left":

nxtState = (self.state[0], self.state[l] - 1)
else:

nxtState = (self.state[0], self.state[l] + 1)

self.determine = False

else:

non-deterministic

action = self. chooseActionProb(action)
self.determine = True

nxtState = self.nxtPosition(action)

#self.showBoard()

if next state is legal
if (nxtState[0] >= 0) and (nxtState[0] <= 2):
if (nxtState[l] >= 0) and (nxtState[l] <= 3):

if nxtState != (1, 1):
return nxtState

return self.state

Grid world example
* Tradeoff between exploration (new info) and exploitation (greedy actions):

def chooseAction(self):
choose action with most expected value
mx nxt reward = 0
action = ""

if np.random.uniform(0, 1) <= self.exp rate:
action = np.random.choice(self.actions)
else:
greedy action
for a in self.actions:
current position = self.State.state
nxt reward = self.Q values[current position][a]
if nxt reward >= mx nxt reward:
action = a
mx nxt reward = nxt reward |
print("current pos: {}, greedy aciton: {}".format(self.State.state, action))
if action == "":
action = np.random.choice(self.actions)

return action

Grid world example

* Define stopping condition:

def isEndFunc(self):
if (self.state == WIN STATE) or (self.state == LOSE STATE):
self.isEnd = True

Grid world example * Bring everything together:

def play(self, rounds=10): i
i=0 E
while i < rounds: |

to the end of game back propagate reward !
if self.State.isEnd:
back propagate |
reward = self.State.giveReward()
for a in self.actions: |
self.Q values[self.State.state][a] = reward
print ("Game End Reward", reward) -
for s in reversed(self.states):
current q value = self.Q values[s[0]][s[1]] :
reward = current g value + self.lr * (self.decay gamma * reward - current_g value)
self.Q values[s[0]][s[1l]] = round(reward, 3)
self.reset()
i+=1
else:
action = self.chooseAction()

append trace

self.states.append([(self.State.state), action])
print("current position {} action {}".format(self.State.state, action))
by taking the action, it reaches the next state :
self.State = self.takeAction(action)
mark is end -
self.State.isEndFunc() .
print("nxt state", self.State.state) i
print("---—-———----- i i i o ")
self.isEnd self.State.isEnd !

Grid world example

* Let’s have a look at test_gridworld_glearning.ipynb
* http://bit.ly/338nV5e

e After running the notebook, change “DETERMINISTIC”
from True to False. What do you notice?

Solving for the optimal policy: Q-learning

* Value iteration algorithm: use the Bellman equation as an iterative update:
Qit1(s,0) = E [r + ymax Qi(s',a)|s,]

* Q will converge to Q* as i -> infinity.

* What is the problem with this?

* Not scalable: must compute Q(s, a) for every state-action pair. If state is e.g. current
game state pixels, computationally infeasible to compute for entire state space!

 Solution: use a function approximator to estimate Q(s,a).
* A neural network!

Solving for the optimal policy: Q-learning

* Q-learning: use a function approximator to estimate the action-value
function:

Q(s, a; ©) = Q*(s, a)
Where O are the neural network weights which need to be learned.

* If the function approximator is a deep neural network -> deep g-learning

(DQN)!

RL agent types -

!
{ v
Tries to learn a policy Model-Free RL Model-Based RL
directly instead of] C
learning the exact value of ()
every (state, action) pair { M ()
Policy Optimization Q-Learning Learn the Model Given the Model

/\Q ' N ™y
<Policy Gradient%— DQN > —> World Models \—{ AlphaZero
—— 4’{ DDPG J"i) -) 3

< A2C / A3C ;— 5 N —> C51 —> I12A
e ——— 4;J ™2 |..r_ \ J J

Combines Policy Gradients
and Q-learning by training
TRPO L both an actor (the policy)

§) and a critic (the Q-function)
-> 2 neural nets

PPO QR-DQN ——> MBMF

~
-
™\
-

HER —> MBVE

L " L. .

Source: spinningup.openai.com

Cartpole Problem

* Objective: Balance a pole on top of a movable cart

e State: angle, angular speed, position, horizontal velocity
Action: horizontal force applied on the cart (or not)
Reward: +1 at each time step if the pole is upright
(within some limits)

_’
M | F 5

(7777777777777 777777777777

OpenAl Gym

* In order to train an agent to perform a task, we need a
suitable physical environment.

* OpenAl gym provides a number of ready environments
for common problems, e.g. Cart Pole, Atari Games,
Mountain Car

* However, you can also define your own environment
following the OpenAl Gym framework (e.g. physical
model of accelerator operation)

@OpenAI

OpenAl Gym — Cart Pole Environment

* Let’s have a look at the Cart Pole environment in cartpole.ipynb

* Main component: step function
e Updates state
* Calculates reward

* Also has rendering functionality

Implementation of a DQN agent

* There are several ready implementations of RL agents
* E.g. Keras RL

* We first define the Q network architecture (in Keras fashion):

model = Sequential()
model.add(Flatten(input shape=(1,) + env.observation space.shape))
model.add(Dense(16))
model.add(Activation('relu'))
model.add(Dense(16))
model.add(Activation('relu'))
model.add(Dense(16))
model.add(Activation('relu'))
model.add(Dense(nb actions))
model.add(Activation(' linear'))
print (model.summary())

Implementation of a DQN agent

* We can use a ready-made policy (BoltzmannQPolicy)
* Builds a probability law on g-values and returns an action selected randomly according to this law.

* We also define the number of actions, the learning rate and the number of steps that
we want to train the agent for, trying to optimize some metric.

* Memory: stores the agent’s experiences
* Number of warmup steps: avoids early overfitting
* Target Model update: how often are weights of target network updated

memory = SequentialMemory(limit=50000, window length=1)

policy = BoltzmannQPolicy/()

dgn = DQNAgent(model=model, nb actions=nb actions, memory=memory, nb steps warmup=10,
target model update=le-2, policy=policy)

dgn.compile(Adam(lr=1e-3), metrics=['mae'])

history = dgn.fit(env, nb steps=100, visualize=True, verbose=2)

Rendering the training of the agent

* Google Colaboratory does not support OpenGL through the browser

* | had to:

* modify rendering.ipynb to avoid using pyglet.gl
* modify cartpole.ipynb to render via matplotlib

* If you were to download the notebook on your laptop, you can do
without the above two notebooks and directly pass the OpenAl gym
environment name as a string.

Let’s try to train DQNAgent for Cart Pole!

Ssummary

* Reinforcement Learning: an agent learns to perform a task
from its interactions with its environment

* Formulation as a Markov Decision Process

* Definitions of state, reward, policy, action

* Concepts of value function and Q-value function
* Q-learning and DQN

