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Outline

• What is Reinforcement Learning?

• RL terminology: states, actions, reward, policy

• Value function and Q-value function

• Q-learning and neural networks

• Python notebooks: Grid World and Cart Pole



What is Reinforcement Learning?
• So far: Supervised Learning

• Data: (X, y)

• Goal: Learn a function to map X -> y

• Examples: classification, regression, 
object detection etc

Dog

• So far: Unsupervised Learning
• Data: X (no y)

• Goal: Learn some underlying hidden 
structure in the data

• Examples: clustering, dimensionality 
reduction, anomaly detection

Abnormal

Normal



What is Reinforcement Learning?

• In Reinforcement Learning, an agent
interacts with an environment to learn 
how to perform a particular task well.

• How is it different to the other learning paradigms?
• There is no supervisor, only a reward.

• The agent’s actions affect the subsequent data it receives

• Feedback is delayed, and may be received after several actions



Cat Agent

State: Sitting

Action: walk Come here!

Reward

Action: keep sitting

Stay hungry..

Observable



Examples of Reinforcement Learning
Fly a helicopter

Make a robot walk

Manage an investment portfolio

Play Atari games better 
than humans



Rewards

• The agent receives feedback from the environment through reward

• A reward Rt is a scalar feedback signal

• It is an indication of how well the agent is doing at step t

• The agent’s job is to maximise cumulative reward 

• Examples:
• Winning a game

• Achieving design luminosity in a collider

• Maintaining an inverted pendulum at the top



Sequential decision making

• Goal: select actions to maximise total future reward

• Actions may have long term consequences

• Reward may be delayed

• It may be better to sacrifice immediate reward to gain more long-
term reward

• Examples:
• A financial investment (may take months to mature)

• Blocking opponent moves (might help winning probability many moves from 
now)



States

• State: what the agent is observing about the environment

• Examples:
• Pixels in an image (of a game, of a driverless car, etc)

• Data from beam instrumentation in an accelerator

• The position of all pieces in a game of chess



The agent and its environment

Agent

Environment
Reward rt

Next state st+1

State st Action at

How can we formalize this mathematically?



Markov Decision Process (MDP)

A0

S0

R1

S1 S2

R2

A1
• Markov property: current state 

completely characterizes state of 
the world.

• Defined by: (S, A, R, P, γ)
• S: set of possible states

• A: set of possible actions

• R: reward for a given (state, action) 
pair

• P(st|st-1, at): transition probability

• γ: Discount factor (usually close to 1)



Markov Decision Process (MDP)

• At time step t = 0, environment samples initial state s0 ~ P(s0)

• Then, for t = 0 until done:
• Agent selects action at

• Environment samples reward rt ~ R( . | st, at)
• Environment samples next state st+1 ~ P( . | st, at)
• Agent receives reward rt and next state st+1.

• A policy π is a function which specifies what action to take by the agent in 
each state.

• Objective: find a policy π* that maximizes cumulative discounted reward



A simple MDP: Grid World

actions = {

1. right

2. left

3. up

4. down

}

Objective: reach one of the terminal states 
(green) with the least number of actions



A simple MDP: Grid World

Random Policy Optimal Policy



The optimal policy π*

• Need to find the optimal policy π* that maximizes the sum of rewards.

• To handle randomness (initial state, transition probability etc):
• Maximize the expected sum of rewards



Definitions: Value function and Q-value function
• Following a policy produces sample trajectories (or paths) s0, a0, r0, s1, a1, r1, …

• How good is a state?
• The value function at state s is the expected cumulative reward from following the 

policy from state s: 

• How good is a state-action pair?
• The Q-value function at state s and action a, is the expected cumulative reward from 

taking action a in state s and then following the policy:



Bellman equation
• The optimal Q-value function Q* is the maximum expected cumulative reward 

achievable from a given (state, action) pair:

• Q* satisfies the Bellman equation:

• Intuition: if the optimal state-action values for the next time-step Q*(s’,a’) are 
known, then the optimal strategy is to take the action that maximizes the 
expected value of

• Optimal policy π* -> taking the best action in any state as specified by Q*.



Solving for the optimal policy

• Value iteration algorithm: use the Bellman equation as an iterative update:

• Qi will converge to Q* as i -> infinity.



Exploration vs Exploitation

During training, we could e.g.:
30% of the time we choose a random action
70% of the time we choose an action with the most expected value



Grid world example

End
Reward: +1

End
Reward: -1

Start

• Agent starts at bottom left.

• At each step, agent has 4 
possible actions (up, down, 
left, right).

• Black square: agent cannot 
move through it.

• Assume each action is 
deterministic.



Grid world example

• First, define the grid world parameters:



Grid world example

• Define the reward:



Grid world example

• Probabilistic result of taking an action:



Grid world example

• Define how the state is updated 
when the action is taken by the 
agent.

• Need to check that the next state 
is not the black box or else 
outside the grid.



Grid world example

• Tradeoff between exploration (new info) and exploitation (greedy actions):



Grid world example

• Define stopping condition:



Grid world example • Bring everything together:



Grid world example

• Let’s have a look at test_gridworld_qlearning.ipynb

• http://bit.ly/338nV5e

• After running the notebook, change “DETERMINISTIC” 
from True to False. What do you notice?



Solving for the optimal policy: Q-learning

• Value iteration algorithm: use the Bellman equation as an iterative update:

• Qi will converge to Q* as i -> infinity.

• What is the problem with this?
• Not scalable: must compute Q(s, a) for every state-action pair. If state is e.g. current 

game state pixels, computationally infeasible to compute for entire state space!

• Solution: use a function approximator to estimate Q(s,a). 
• A neural network! 



Solving for the optimal policy: Q-learning

• Q-learning: use a function approximator to estimate the action-value 
function:

Q(s, a; Θ) ≈ Q*(s, a)

Where Θ are the neural network weights which need to be learned.

• If the function approximator is a deep neural network -> deep q-learning 
(DQN)!



RL agent types

Source: spinningup.openai.com

Tries to learn a policy 
directly instead of 
learning the exact value of 
every (state, action) pair

Combines Policy Gradients 
and Q-learning by training 
both an actor (the policy) 
and a critic (the Q-function) 
-> 2 neural nets



Cartpole Problem

• Objective: Balance a pole on top of a movable cart

• State: angle, angular speed, position, horizontal velocity
• Action: horizontal force applied on the cart (or not)
• Reward: +1 at each time step if the pole is upright 

(within some limits)



OpenAI Gym

• In order to train an agent to perform a task, we need a 
suitable physical environment.

• OpenAI gym provides a number of ready environments 
for common problems, e.g. Cart Pole, Atari Games, 
Mountain Car

• However, you can also define your own environment 
following the OpenAI Gym framework (e.g. physical 
model of accelerator operation)



OpenAI Gym – Cart Pole Environment

• Let’s have a look at the Cart Pole environment in cartpole.ipynb

• Main component: step function
• Updates state

• Calculates reward

• Also has rendering functionality



Implementation of a DQN agent
• There are several ready implementations of RL agents

• E.g. Keras RL

• We first define the Q network architecture (in Keras fashion):



Implementation of a DQN agent

• We can use a ready-made policy (BoltzmannQPolicy)
• Builds a probability law on q-values and returns an action selected randomly according to this law.

• We also define the number of actions, the learning rate and the number of steps that 
we want to train the agent for, trying to optimize some metric.

• Memory: stores the agent’s experiences
• Number of warmup steps: avoids early overfitting
• Target Model update: how often are weights of target network updated



Rendering the training of the agent

• Google Colaboratory does not support OpenGL through the browser

• I had to: 
• modify rendering.ipynb to avoid using pyglet.gl

• modify cartpole.ipynb to render via matplotlib

• If you were to download the notebook on your laptop, you can do 
without the above two notebooks and directly pass the OpenAI gym 
environment name as a string.



Let’s try to train DQNAgent for Cart Pole!



Summary

• Reinforcement Learning: an agent learns to perform a task 
from its interactions with its environment

• Formulation as a Markov Decision Process

• Definitions of state, reward, policy, action

• Concepts of value function and Q-value function

• Q-learning and DQN


