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Polynomial Chaos Expansion (PCe)

Artificial Neural Nets (ANNs)
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Surrogate Model a Simple Definition

Surrogate models (SMs) approximate a compu-
tationally expensive simulator η. Suppose

y(x) = η(x), x ∈ IRn, y ∈ IRm

then the SM is an approximation of the form

ŷ(x) = η̂(x)

such that
y(x) = ŷ(x) + ε

and ŷ(x) cheap to evaluate.
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A Complicated Example (PCe)
[AA, On Nonintrusive UQ and SM Construction ... (2019)]

Goal: model halo hx =
〈q4x〉
〈q2x〉2

− C & x̃

Simplification: 3 design parameters
1 initial condition: 〈xpx〉
2 collimator setting: ∆C1

3 rf phase setting: φ1.

This extensive search in the 3 dimensional parameter space
requires PIC models with enough particles to estimate halo
at a given location.
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Illustration of the Basic Ideas (PCe)

Let η be the simulator
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Polynomial Chaos Expansions (PCe) I

All square integrable, second-order random processes with finite
variance output, y(ξ) ∈ L2 (Ω,F ,P), can be written as [N. Wiener]

y =

∞∑
k=0

αkΨk(ξ).

y: Random Variable (RV)

αk PC coefficients (deterministic)

Ψk: Hermite polynomial, ξ: Gaussian RV

Expansion in terms of functions of random variables multi-
plied with deterministic PC coefficients.
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Polynomial Chaos Expansions (PCe) I
[AA, On Nonintrusive UQ and SM Construction ... (2019)]

Algorithm: generate for each design variable, a PC surrogate
model to order K

1 generate N samples (ξn) according to the sampling strategy
of interest

2 create the deterministic training points with high fidelity
simulations (non-intrusive)

un = η(ξn).

3 solve for αk via

orthogonal Galerkin-projection
regression methods
Bayesian Compressive Sensing
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Polynomial Chaos Expansions (PCe) II
[AA, On Nonintrusive UQ and SM Construction ... (2019)]

Given the computed αk values one assembles η̂

η̂(ξ) =
K−1∑
k=0

αkΨk(ξ)

S(ξ) =

∑
k∈I

α2
k

K−1∑
k=0

α2
k

Surrogate Model η̂ Global Sensitivity S
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Predictions - hx
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Predictions of x̃ with 95% CL
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Sensitivities
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MOGA for the Argonne Wakefield Accelerator
[N. Neveu, AA, et al. (2019)]

Gun

S1 S2 Acc. Cavities

L1L2L3L4L5L6

Quads Drive Line

Witness Line

Kicker

Septum
Dipole

PETS2

PETS1

ACC2 ACC1 Gun

S1S2

L1

Full 3D Start to End (S2E) needed

OPAL Particle In Cell (PIC) model

Very timeconsuming

Parameter study / multi-objective optimisation expensive
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Machine Learning to Construct a cheap & accurate SM
[A. Edelen et al (2019)]

optimise parameters at a given location

One 3D S2E 300 (s) on 8 cores

7 QoIs, 7 Dvars

MOGA (in OPAL): G = 200, I = 100⇒ ground truth

Surrogate Models for Particle Accelerators ICALEPCS - New York - 6. October 2019 Page 14 / 25



4 Step Process to Construct an ANN SM

1 generate random sample

2 split labeled data set (80%, 20%)

3 create ANN

4 understand quality
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Artificial Neural Network

Fully connected and feed forward

Hyperparameters

A lot of different architectures
Learning rate

Best results using

6-12-24-48-96-8
Adam optimizer with 0.0001 learn rate, trained
for 30k epochs
Tanh as activation, no activation after output
layer
Weights inverse proportional to the estimated
density likelihood

Figure: Neural Network scheme
https://towardsdatascience.com
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Fidelity on the Test Data I
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When all comes together ....
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Take Home Points

OPAL MOGA: 24h on ≈ 5000 cores

Train ANN once: 2− 5h on ≈ 128 cores

ANN & MOGA : ≈ 30 minutes ⇒

Speedup > 1 000 000 & accurate
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Take Home Points

Surrogate Models are the only way to achieve
real-time performance & accuracy in
complicated system!

ANN & PCe are wonderful tools to achieve this

Much to learn robustness, training sizes, &
accuracy
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Backup
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Motivation

3D → 2D
∂◦
∂t

= 0

Reduction mathematically

Polynomial Expansion (n → ∞)

High-Dimensional Model
Representation (PCe, Sobol’, ANOVA exact )

Artifical Neural Nets (ANNs)
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Motivation
Weak vs. Strong Scaling
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Motivation
Weak vs. Strong Scaling
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