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FERMI: 
Seeded Free-Electron Laser

Free-Electron Laser (FEL): IV generation light source

• Radiation generated by the interaction between a relativistic electron 

beam and a magnetic structure

Seeded FEL: electron bunch modulated in energy by seed laser
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Seed Laser Alignment System

A standard optical alignment system consist in:

• 2 planar Tip-Tilt mirrors (TTs) each one paired with 2 piezo-motors

• 2 screens based on Charge-Coupled Devices (CCDs)

Analytical model of the simplified system

→ Simulated environment in MATLAB for off-line tests
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Seed laser 

simplified scheme
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RL Algorithms & MATLAB

Considered RL algorithms:

• SARSA()

• Q-learning

General details:

• 𝜀 − 𝑔𝑟𝑒𝑒𝑑𝑦 policy

• Potential-Based Reward shaping 𝐹 𝑠, 𝑠′ = 𝛾 𝑠′ − 𝑠

• Gaussian Radial Basis Functions (RBFs) as Lin. Func. Approx.

All algorithms have been implemented in MATLAB

Reinforcement Learning Toolbox was not already released
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Tabular and with Linear Function Approximation
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RL Algorithm for real tests

Q-learning with Linear Function Approximation (LFA)

• Q-learning approximates the optimal action-value function 𝑄∗

• LFA maps a discrete state space into a continuous one

Parametric form 𝑄 𝑠, 𝑎, 𝜃 = 𝜃𝑇𝜑 𝑠, 𝑎 using Gaussian RBF

Chosen for:

• Lower number of hyper-parameters with respect to SARSA()

• More adaptable to real systems than Tabular algorithms
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Electro Optical Sampling (EOS)
Service Laser
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Service Laser of the EOS station:

• Alignment scheme similar to the seed laser

• Often available → 10 runs (# episodes: Training 300 + Test 100)

• More time consuming than simulator

• Code debugging on safer system

EOS laser

simplified scheme

Intensity measured in Region of Interest (ROIs) on CCDs
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FERMI FEL - Seed Laser
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FERMI Seed Laser:

• Challenging hyper-parameters setting

• Hardly available → 1 runs (# episodes: Training 300 + Test 50)

• Higher noise in measurements 

• Drifts

Seed laser

simplified scheme
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FERMI FEL - Results

Intensity: measured by the 𝐼0 monitor

Intensity Target, 𝐼𝑇, is reached

Episode stops if  

max num of steps is reached
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FERMI FEL – Results 𝐼𝑜 monitor

FEL intensity in the first 25 minutes of the training phase
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Results Discussion

• Exploration in first episode is sufficient to easily reach target in 

next episodes

• Peaks in Tests:

I. Machine drifts

II. Improper setting of :

→ 𝑘 (reward shaping hyper-parameter)

→ 𝑅 (reward) during training

Further analysis will be carried out in future works

Tuning to balance between these 

values in successful episodes
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Future Developments

PYTHON implementation of:

• Deep-Q-Network (DQN), variant of Q-learning algorithm

→ Learning directly from images of the FEL spectrum

• Policy Parametrization 

→ Continuous actions
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Lessons Learned & Open Questions

▪ Why developing RL code from scratch in MATLAB?

• Best initial personal knowledge

• RL Toolbox was not already released

• Very valuable experience of understanding the internals of RL

▪ Why RL instead of other optimization methods (i.e. Gradient Descent, Nelder 

Mead, Extremum Seeking, ...)? 

• Global vs Local optima

• Memory of previous experience

▪ Weak points of RL 

• Time consuming

• Problem of machine drifts

• Delicate definition of hyper-parameters
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Thank you!
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