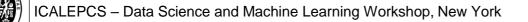


Elettra Sincrotrone Trieste

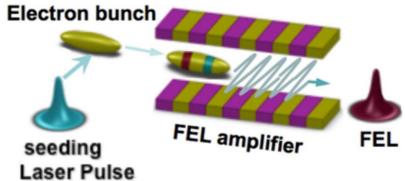

BUREAU VERITAS

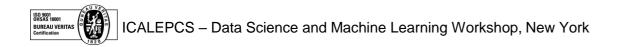
Reinforcement Learning for FEL performance optimization - My Experience -

Niky Bruchon PhD candidate – University of Trieste Department of Engineering and Architecture

Mail:	<u>niky.bruchon@phd.units.it</u>
	<u>niky.bruchon@elettra.eu</u>
Phone:	+39 040 375 8793
Mobile:	+39 366 329 2825

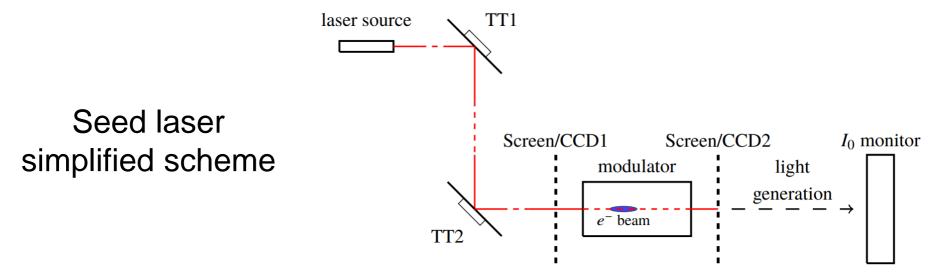
FERMI: Seeded Free-Electron Laser




Free-Electron Laser (FEL): IV generation light source

 Radiation generated by the interaction between a relativistic electron beam and a magnetic structure

Seeded FEL: electron bunch modulated in energy by seed laser



BUREAU VERITAS

A standard optical alignment system consist in:

- 2 planar Tip-Tilt mirrors (TTs) each one paired with 2 piezo-motors
- 2 screens based on Charge-Coupled Devices (CCDs)

Analytical model of the simplified system

 \rightarrow Simulated environment in MATLAB for off-line tests

RL Algorithms & MATLAB

Considered RL algorithms:

- SARSA(λ)
 Q-learning

Tabular and with Linear Function Approximation

General details:

ISO 9001 OHSAS 180

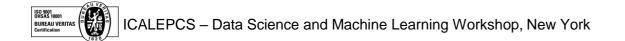
BUREAU VERITAS

- ε greedy policy
- Potential-Based Reward shaping $F(s, s') = \gamma \Phi(s') \Phi(s)$ •
- Gaussian Radial Basis Functions (RBFs) as Lin. Func. Approx. ۲

All algorithms have been implemented in MATLAB

Reinforcement Learning Toolbox was not already released

ICALEPCS - Data Science and Machine Learning Workshop, New York

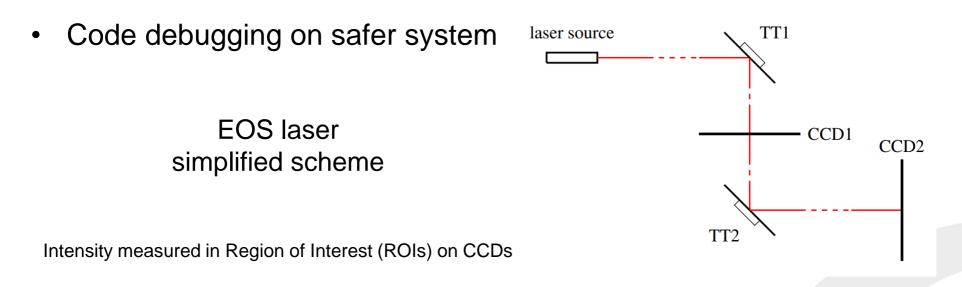


Q-learning with Linear Function Approximation (LFA)

- Q-learning approximates the optimal action-value function Q^*
- LFA maps a discrete state space into a continuous one Parametric form $Q(s, a, \theta) = \theta^T \varphi(s, a)$ using Gaussian RBF

Chosen for:

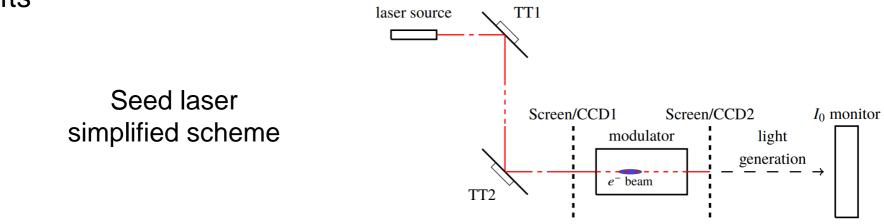
- Lower number of hyper-parameters with respect to SARSA(λ)
- More adaptable to real systems than *Tabular* algorithms


BUREAU VERITAS

Electro Optical Sampling (EOS) Service Laser

Service Laser of the EOS station:

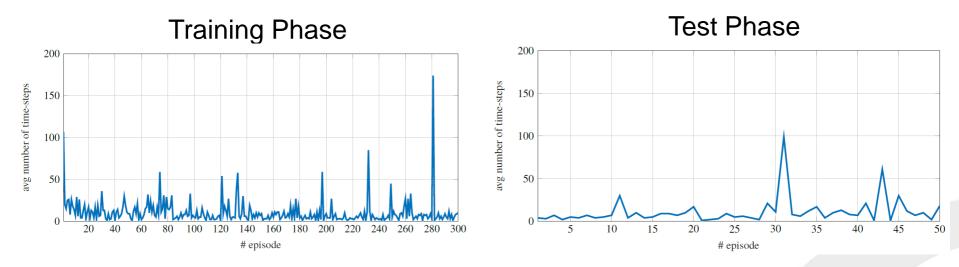
- Alignment scheme similar to the seed laser
- Often available \rightarrow 10 runs (# episodes: Training 300 + Test 100)
- More time consuming than simulator



FERMI FEL - Seed Laser

FERMI Seed Laser:

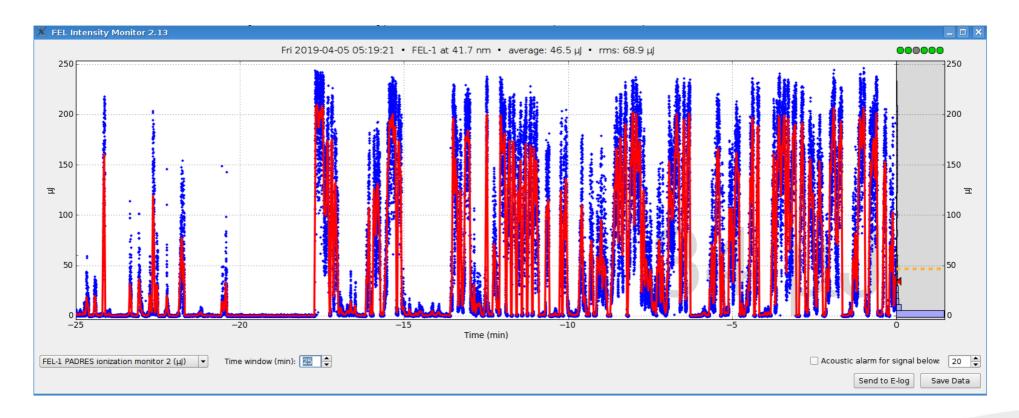
- Challenging hyper-parameters setting
- Hardly available \rightarrow 1 runs (# episodes: Training 300 + Test 50)
- Higher noise in measurements
- Drifts



FERMI FEL - Results

Intensity: measured by the I_0 monitor

Episode stops if
$$\begin{cases} Intensity Target, I_T, is reached \\ max num of steps is reached \end{cases}$$



FERMI FEL – Results *I*_o monitor

FEL intensity in the first 25 minutes of the training phase

Results Discussion

- Exploration in first episode is sufficient to easily reach target in next episodes
- Peaks in Tests:

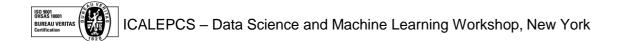
ISO 9001 OHSAS 180

BUREAU VERITAS

- I. Machine drifts
- II. Improper setting of :
 - \rightarrow k (reward shaping hyper-parameter)
 - \rightarrow R (reward) during training

Tuning to balance between these values in successful episodes

Further analysis will be carried out in future works



PYTHON implementation of:

• Deep-Q-Network (DQN), variant of Q-learning algorithm

 \rightarrow Learning directly from images of the FEL spectrum

- Policy Parametrization
 - \rightarrow Continuous actions

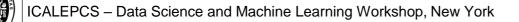
- Why developing RL code from scratch in MATLAB?
 - Best initial personal knowledge
 - RL Toolbox was not already released
 - Very valuable experience of understanding the internals of RL
- Why RL instead of other optimization methods (i.e. Gradient Descent, Nelder Mead, Extremum Seeking, ...)?
 - Global vs Local optima
 - Memory of previous experience
- Weak points of RL

BUREAU VERITAS

- Time consuming
- Problem of machine drifts
- Delicate definition of hyper-parameters

Thank you!

ICALEPCS – Data Science and Machine Learning Workshop, New York


BUREAU VERITAS

Reinforcement Learning for FEL performance optimization - My Experience -

Niky Bruchon PhD candidate – University of Trieste Department of Engineering and Architecture

Mail:	<u>niky.bruchon@phd.units.it</u>
	<u>niky.bruchon@elettra.eu</u>
Phone:	+39 040 375 8793
Mobile:	+39 366 329 2825

www.elettra.eu