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Problem statement

*  Nowadays strong focus on reliability & availability of the machine (read ‘more
beam-time with less money’)

* Increasingly more data generated (and stored) by all systems (experiments,
accelerator equipment, beam operation, IT)

- This data can be used to model the system, on which these are used to
provide better and faster solutions to all kinds of problems (classification,
regression, feedback control, anomaly detection)

* Goal of the CERN ‘ML Coffee’ discussions is to collaborate on applying
existing ML algorithms to our everyday problems; also identify future projects
and share experience

« Indico site with presentations at https://indico.cern.ch/category/11178/
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Discussions

General theory & discussions:

1. Neural Networks (NNSs)
1. Theory, existing libraries (TensorFlow, Keras)
2. Sextupole surrogate model (design choices ref. trial and error)

2. Numerical optimization: Derative Free Optimization (DFO), Black Box
Optimizatin (BBO), Powell's method, COBYLA, BOBYQA

3. Reinforcement learning
1. Theory (states, actions, reward, policies)
2. Deep Q learning (DQN), Bellman, DDQN, Normalized Advantage Functions (NAF)
3. Policy based, continues action space -> deterministic policy gradient (DPG)

4. Representational Learning with Variational AutoEncoder (VAE), disentanglement
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Discussions

Applications:

1. (Powell) numeric optimizer

1. Linac4 optimizing transmission and chopping efficiency, including BOBYQA & COBYLA
2. LEIR injected intensity optimization (including RL with DQN, DDPG demos)

3. Automated ZS alignment (including surrogate model, RL for continuous action space)
Classifying LHC/SPS beam dump (images)

1. With Deep Convolutional Neural Networks (DCNNSs)

2. Using Generative Adversarial Networks (GANS) to create images
3. With Variational AutoEncoder (VAE)

LHC injection magnets anomaly detection
ElasticSearch Anomaly detection using LSTMs

. Image reconstruction for beam profile measurements, using UNET architecture (CNN) and
VAE

N
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1.1 Linac4 transmission and chopping optimizer

Chopping in Medium Energy Beam Transport (MEBT)

o Pulsed electric field to give Transverse RF kick to remove unwanted
beam @ 3 MeV
o - loss-free injection into the PSB (4 rings) and into the PSB RF
bucket (~ 630 ns)
— Remove beam during the rise time of PSB distributor
— Produce beam segments per ring at PSB revolution frequency
Chopping efficiency depends on optics between chopper and
chopper dump
RF buncher RF buncher RF buncher

chopper Chopper

Matching section Chopping section Matching section
(from RFQ) (to DTL)

ML coffee 29" of March 2019
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First implementation

Goal: optimized transmission AND chopping efficiency

The implerTertation:
— Build reference = BCT 1 defines intensity for unchopped beam,
chopping pattern from chopping timings

= actions: quadrupole settings; observable: chi2 between BCT 2 and reference
pattern

— Powell numeric optimiser: goal minimise chi2.

Powell: bi-directional line search along search vectors; search
vectors are updated in the course of the optimization. No
derivatives. Very robust. No prior knowledge of function needed.

— conjugate direction method

ML coffee 29" of March 2019




Status from last LINAC4 3 MeV run

0 BCT signals

Before optimisation... |
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Status from last LINAC4 3 MeV run

0 BCT signals

]

After optimisatioal.w.“..




1.2 LEIR injected intensity optimization (Including
RL with DOQN, DDPG demos)

Classical Powell:
LEIR revolution 2018

e 2018: record injected
intensity into LEIR (and
LHC)

» Fast recovery after LEIR ¢ ¢
machine stops and .

. o 500 1000 1500 2000 25
drifts Cycle time [Ms]  ourtesy:Niancacci

Result LHC 2018 for LEIR extracted intensity

intensity (charges]
o » 5 8 %

* Reproducible
performance
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Iterative updates by using the Bellman equation yield an optimal policy p.

(The Q function is the function, which tells us (the computer) what the impact of taking a
decision (a) in a situation (s) and following a tactic (p) afterwards in terms of achieving our
goal is!)

®
We are going deep: DQN

layer

\\\\\

* Approximating Q via
ANNs

* Deep models are what
allow reinforcement
learning algorithms to
solve complex problems
end to end!

* The reinforcement
learning problem is the Al
problem!




What we did:

state| |reward action

S| |R A,
L i R
. The reward: Intensity of BCT10
. The state: Position of the beam at BPM60
. The action: Change by + A or hold the value of dipole BHN10

The position of the elements

BHN10  BPM60

[ o, |




DFO _driven DQN

Using the data

ing of the Network

» Number of iterations reduced due to Powell training by a factor of

two Powell - run

Training - run after tuning with Powell
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DDQN - results

» Number of iterations further reduced by a factor of three
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1.3 Automated ZS alignment (+ RL for continuous
action space)

Introduction
The SPS 75

SPS ZS composed of 5 tanks
* System with 12 degrees of freedom (dof) | 7l |
* 10 dof: adjustable anode wire positions up- and downstream for every tank
* 2 dof: girder positions up- and downstream
* Loss monitoring: > 20 beam loss monitors (BLMs)
¢ Entangled dynamics & ‘many’ parameters:
modeling and optimisation not straightforward
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Modified Powell:
Automatic ZS alignment

* A modification of Powell’s method to obtain a bounded method:

min  f(x)
xeR"
st. a<x<b

¢ Penalty method, avoid to move motors to far:

120 it
. ianment aaith. O.DOL. Al i 400 nact | QO J|||||| =
Al D

s ~30% loss reduction with 125 iterations, 8h -> ~45 min! R
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Using three of Powell’s derivative-free optimizers:
1/ classic Powell (Powell’'s conjugate direction method)

2/ COBYLA (Constrained Optimization by Linear Approximation
3/ BOBYQA (Bounded Optimization by Quadratic Approximation)

COBYLA vs. BOBYQA (dashed)

Who wins the challenge?

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2
Number of iterations

COBYLA vs. Powell (dashed)
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COBYLA

Respects constraints!

v 6 Parameters

v The constrain is 5e-8

v Does the job -
controls the losses!
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Motivation
Reinforcement learning

Reinforcement learnin
Can we do even better? s
* Numerical optimiser has no memory: alignment from scratch every time

* Reinforcement learning (RL)
Agent interacts with environment and learns dynamics

of the system - Environment
" State not restricted to action space ccRlstat)
Agent strategy / knowledge typically represented by
neural network (Deep RL)
=> once trained, agent remembers and finds optimum in a few steps

action

state (observation)
reward

é 26.07.2019




Motivation
Reinforcement learning

Reinforcement learning

+ Sample efficiency is key as machine time is expensive
* Idea: Pre-train agent offline for ‘warm start’ in accelerator
Offline training requires a model F(x) of the system
* Tracking simulation, data-driven model, ...
* Fast, cheap evaluation needed:
Pre-training may require hundreds to few thousand iterations

Reinforcement learning

action

Environment
- accelerqtor)
U data-driven

model
state (observation)
! reward

Features Observables

F(x)

>20BLMs

=

charge)

Beam loss (Gy/

E— Il

BLMs
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ZS data-driven model: type B fg"
. . . w10
Validation: loss response to girder scan gE
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Running optimisers and RL algorithms on the model
Optimisers (see e.g.

Powell method BOBYQA
2t 6 o . _—
E‘ % * Optimisers probe feature space not just along orthogonal directions
. 37“'7 — * Good test for “robustness” of model: it behaves well
i é = M ¢ All methods either find or go towards an optimum
5 : o8 * COBYLA (linear approx.) and BOBYQA (quadratic approx.), both constrained
= algorithms, perform best in terms of number of iterations i
* Bayesian optimisation takes more iterations and executes slowly. Advantage is
that it builds model on-the-fly (it would perform better in future runs)
2 : e ¢ Algorithms converge to different final anode configurations: AT
gg i e partially explained by weak loss response to ZS4 & ZS5 anode positions (?)
5 L A
gEull b1 bt
g 85
55 £5
2% . 250

120
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2.1 Classifying LHC/SPS beam dumps with Deep Convolutional
Neural Networks (DCNNS)

Arrangement of ConvNet layers




Training the Network

* Imagine we have 2 Convolution/activation layers each followed by pooling
* 15t convolution layer is the input layer

* 1 Flattening layer

* 2 Dense (fully connected) layers

* 1 Softmax output layer

* Here 5 layers have trainable weights: convolution filters and dense layers

Pool
Pool
Softmax
Ow OX»

YA Dense
W Dense

0000 Flatten




Network Training - Backpropagation

* Error E used to update training weights w;, via calculation of
partial derivative of each weight SE/dw;

* As an aside, training and fitting CNNs is very well adapted to
GPUs....much faster than CPU

)

Error =0.6

Pool
Pool
Softmax
Ow OX»

YA Dense
W Dense

0000 Flatten

@© Rewy
\4




V1 Classification examples

File: 3SMKBH_8MKBV_7 jpg Prediction: 3MKBH_6MKBV Score: 1.00000

Not trained on this fault

Nominal Smre

File: MKB_ERRATIC3_3 jpg Predi

Not trained on this fault

File MKB_ERRATIC2_3.jpg Prediction: OMKBH_SIMKEV Scor

v

File: AMKBH_OMKBV_1.jpg Prediction: 4MKBH_OMKBYV Score: 1.00000

v

File: OMKBH_6MKBVY_6.jog Prediction: OMKBH_SMKBV Score: 1.00000

File: OMKBH_OMKBV_1.jp Prediction: OMKEH_OMKBV Score: 1.00000

V1 with x10 augmentation 0.3 dropout




V2 ConvNet for SPS dump

* Aim is try to train a NN using simulations
* Produced 1000 5|mulat|ons of expected BTVDD readings for 4 categories for the training set:
* “Nominal”, “3 MK VIKDV”, “2 MKDH & 3 MKDV”, “1 MKDH & 3 MKDV”
* Produced 1000 5|mulat|ons for the same categories for the validation set
* Data produced for the SPS:
* Dump for SFTPRO beam at 400 GeV = 2 batches with realistic length and batch spacing
* Random CO in x and y at the BTV location = Gauss(0, 3 mm) (quite generous...)

* Random emittance in x and y = Gauss_x(9 mm.mrad, 3 mm.mrad), Gauss_y(7 mm.mrad, 3
mm.mra

* 1000 particles per 420x2x25 ns slots (simpler to simulate) all the same
“Simple” test data

Nominal 2 MKDH & 3 MKDV 1 MKDH & 3 MKDV

—20 -20 ~20 —20
—30 -30 -30 -30 = - \

0 = Ei E_ £ _. v

- - - _——— g -y E-%
i L ~ =50 ~ =50 | ~ —50
-

_— > e . B 6 > e L - E e
-70 —70 -70 =7

%0 —80 —80 —80

20 -10 0 10 20 30 40 50 0 o —10. 0 10 20 30 40 50 0 o -0 0 10 20 30 40 50 220 —10 O 10 20 30 40 50
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ConvNet for SPS dump

* Adding more training data with
ImageDataGenerator augment from
keras to increase the statistics >
4000x10 . Much better.

“Simple” test data

Confusion matrix

10

1 MKDH & 3 MKDW

2 MKDH & 3 MKEV

2

- True lal

Nominal )

Predicted label

1 MKDH & 3 MKDV Nominal

e w a2 o @ B K

10
0
08
o7
06

Accuracy

0s
04
03
02

— Training loss

— validation loss

10 E] © 50 6 L]
— Training accuracy

— Validation accuracy

0 E) © 50 0 ™

Epochs




2.2 Classifying LHC/SPS beam dumps Using Generative Adversarial Networks
(GANS) to create images

GAN architecture

Training set
(real images)
7

Discriminator

4 Real
[

>
—
Fake

Random noise
R
=
Fake image

Generator




Fully-connected layers GAN

256x256pixel nominal BTVDD dumps, with FCGAN

After 50 Epochs: accurate sweeps are output...

...but these are pseudo-images from single array of 65,536 pixel

—there can be no spatial correlation or feature representation in the Generator
- High background noise a known feature of FC GAN...seen by Elli’s IF classifier




Deep convolutional GAN

256x256p DCGAN with BTVDD

6 Epochs: more accurate features emerge
We hope that we can use the high-level feature representation
in the generator to produce images of failure cases




2.3 Classifying LHC/SPS beam dumps with Variational AutoEncoder (VAE)

Latent space z

* Representational Deep Learning uses an accessible ‘latent’ space z
where a representation of ¢ (configuration, or generator) is
deliberately enforced

* zvalues can be extracted corresponding to a specific observable x
* The problem is then ‘reduced’ to mapping z to generators ¢

* For a generative method (VAE, GAN, ...) reconstructed observables x
can be produced by providing new samples of z

Physical configuration Observable data Latent space
(e.g. NMKBH, nB, ...) (e.g. BTVDD image) representation

B -

Physical process ML black box
(or simulation)

’




Under the hood: VAE guts

* Consists of Encoder, an information bottleneck, and decoder
* 2 parts to Loss function: MSE “x reconstruction” and KL “z relative entropy’
* ¢ adds randomness while allowing differentiation for back-propagation

4

MSE
l/,-_________-___________________-_—_______-_____-_____________-_____-_________-—_— \\
! . N
:_! Information bottleneck ;\[, :
A

( KL(z,N(0,1)) ‘

+

o
encoder decoder

x'=D(z)




BTVDD datasets

* Produced synthetic BTVDD images x with tracking simulation

* Realistic physical configuration space c (kicker waveforms, tracking)
* Qutput closely resembles measured BTVDD traces

* 7 degrees of freedom, continuous or discrete

* Full control of physical configuration space ¢ and of images x(c):

* numBatches

* batchLength

® batchSpacing 3 g s3mple 1000 numgatches 18 5 sample 4000 numBatches 17 sample 8000 numBatches 8

* NMKDH '

* nMKDV

* energy
Sweep delay

0 20 40 6 8 100 120 0 2 4 6 8 100 120 0 2 4 6 8 100 120




VAE + Predictor results

* Good accuracy in predicting (almost) all configuration space values
* Difficulty for nMKBH for short sweeps...

-
=

Predicto

175
150
125
100
75
50
25
0.0

P1: R? = 0.9992

nBatches (1-18)

5 10 15
Ground truth

P2: R? = 0.9932

nMKBH (1-4)

1 2 3 4
Ground truth

Predictor 3

P3: R? = 0.9982

nMKBV (1-6)

2 3
Ground truth




3. LHC injection magnets anomaly detection

WEMPRO010

3. Anomaly Detection Engine Pipeline (ADEP)

Pipeline and grid-search

* Modular and object-oriented, to allow easy addition of e.g. models

* Grid search allows automated model hyper-parameter and evaluation
tuning

* MBW: feature selection is now part of the pipeline as well

Interpretation &
mmmmmmmmmm

Post-
processing

Pre-
processing

Anomaly
Detection

Evaluation Visualization

Feature Engineering Isolation Forest




3. Anomaly Detection Engine Pipeline (ADEP)

Visualization
using Plotly Dash, interactive data browser with live validation metrics

VI T 111 |

3




5. COBRAS for interactive clustering

https://dtai.cs.kuleuven.be/software/cobras/|
Goal: improve the segment predictions by clustering with user-input
Currently through a terminal or a Jupyter notebook

COBRAS requires fixed length segments, not our case, so we made an artificul subset of features, one is the
number of timestamps

Other features chosen: fourier-components of pressure and temperature, seemed most plausible to cluster
the false positives

Results from (non-interactive) clustering of 2018 data with the model from 2017 interactive COBRAS

clustering:
Year 2018 Anomaly  Normal Year 2018 Anomaly  Normal
Detected TP=4  FP=33 ‘Detected TP=6  FP=2

N o
Undetected FN =3 TN = 1407 Undetected FN=1 TN = 1437




4. Elasticsearch Anomaly detection using LSTMs

ML for Elasticsearch Anomalydetection

* New approach: basic idea (status of June 2019)
- Use LSTM networks
- Use last 11 samples (history of 1h) and predict number 12 which is NOW.

- Compare the predicted and the real value

- The RMS is used as loss function
¢ Jennifer Anderson worked on this between 1/7 - 31/8

- Not much time, still mission accomplished !

- Updates presented here are mainly based on her work




LSTM’s — what’s the purpose?

* Proposed in 1997 by Hochreiter and Schmidhuber

*  Goal: Attack the decaying error back flow - introduce
constant error flow through constant error carrousels in
special units

*  Complemented by Gers, Schmidhuber and Cummins in
1999

* Learn from sequenced data, time series with long time lags

*  Solves the vanishing gradient problem

Colah’s blog post: Hochreiter-Schmidhuber:
Undersalning LSTM Networks Long Short-Term Memory (1997)




ft = Og (va ' [ht—llxt] + bf)

forget gate  cell state h i = os(W; -« [he—y, x¢]+ b))
[y C Ce = on,(We + [he—1, %¢] + be)
hy :’I'F%Ct:;% N Ce=fe Catie G

X, I ‘[ o = ag(Wp « [he—1,x¢] + Do)

input gate output gate ht — Ot . O'h(ct)




Comparison MAV and LSTM approach

Very similar — but not equal

Over-training ?




ML for Elasticsearch Anomalydetection

STM Mean squared error

* Example:

- View for Wednesday for
one cluster

Normal monitoring clean
until 3pm

@timestamp per10 minutes

- Started investigating

- One node over disk limit in
ES

Caused by a new index ¢
class created by a user
which is badly designed 20

®timestamp per 10 minutes




5. Image reconstruction for beam profile measurements,
using UNET architecture (CNN) and VAE

Bl R&D: Optical fibers Imaging

Beam profile imaging upgrade: imaging fiber system
Principle: Transport an image away from a high radiation
level area up to the camera located in a ‘safer’ place.

Advantages: Increased life time.

Procurement of 2x2m and 2x10m long/bunch of 10k fibers.

ARIES workshop, 1st-3rd April 2019 D. Celeste, BE-BI-PM




Imaging with a single multimode optical fiber




What network to use ?

= conv 3x3, ReLU
copy and crop
§ max pool 2x2
4 up-conv 2x2
= conv 1x1




INPUTS

OUTPUTS

v
z
o
=
=
a
Lk
o
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With “Beam” inputs

ALl
Sl

batch_size=16, — taining
steps_per_epoch=100, shaaton
epochs=100,

validation_spli

Less Poor amount of data (1000 images)
Augmented by adding noise
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VAE configuration

* Images downsampled to 128x128 (eventually try 256x256, =real size)

« Convolutional VAE architecture, similar to below:
* Additional 128x128x32 convolution layer and input/output dimension of 128x128
* Convolution filter layer connected directly to loss layer/first filter layer (no dense)
* Filter size always 3x3, no pooling layers (instead used stride = 2)

https://gitlab.cern.ch/goddard/beta-vae
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