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Outline

ÅIntroduction

ÅSelf-consistent symplectic multi -particle tracking model

ÅExtraction of transfer map including self-consistent space-

charge using differential algebra

ÅAn illustrative example  
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Introduction: Transfer Map Provides a Tool for Analysis, 

Design and Tracking

ÅUse transfer map and normal form analysis to get amplitude 
dependent tune shift, nonlinear resonance strength, nonlinear 
chromaticity, including space-charge effects

ÅUse transfer map for dynamic aperture study including space-charge 
effects

ÅUse transfer map for long-term tracking without numerical noise

ÅUse transfer map to design compensation elements to mitigate the 
space-charge effects

ÅUse transfer map for high-order matching 
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A Symplectic Multi-Particle Tracking Model (1)

44

H = H1+H2

A formal single step solution

space-charge 

Coulomb potential

external focusing/acceleration

multi -particle Hamiltonian

J. Qiang, Phys. Rev. ST Accel. Beams 20, 014203 (2017).
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A Symplectic Multi-Particle Tracking Model (2)

higher order: 

Symplectic condition: 

H. Yoshida, Phys. Lett. A 150, p. 262, 1990. 

M is the Jacobi Matrix of M

ÅThe above integrator can be extended to higher order

ÅEach sub-map needs to be symplectic for the symplectic integrator
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A Symplectic Multi-Particle Tracking Model (3)

M 1

Åsymplectic map for H1 can be found from charged particle optics method

To satisfy the symplectic condition:

M 2 will be symplectic if pi is updated from H2 analytically

M 2
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Self-Consistent Space-Charge Transfer Map (1)



Self-Consistent Space-Charge Transfer Map (2)
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Self-Consistent Space-Charge Transfer Map (3)
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Symplectic GridlessParticle Model

M 2

w is the particle 

weight factor
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Symplectic PIC Model

M 2



Solution of Hamilton Equation in Transfer Map
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ü f can be a very complicated function

ü Mi is the ith order transfer map, and is related to 

the ith derivative of function f
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Consider a one-dimensional Taylor approximation:

To find the derivative, i.e. Taylor map, one can approximate the derivative numerically:

loss of accuracy

How to attain Mi effectively?



Introduction to Truncated Power Series Algebra (TPSA)
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A point x in number space maps to 

another point y=f(x) in number space 

A point Dxin DA vector space maps to 

another point Dfx in DA vector space 
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Use symbolic calculation from package like Mathematica:

For example:

Å very complicated for high order derivatives

Å even impossible for some function without closed form (e.g. simulation)

Define a N-dimension function space with bases:

The derivative up to Nth order can be regarded as a point in that space and 

represented as a vector:

For example, a constant c, its representation as  

a variable x as, 


