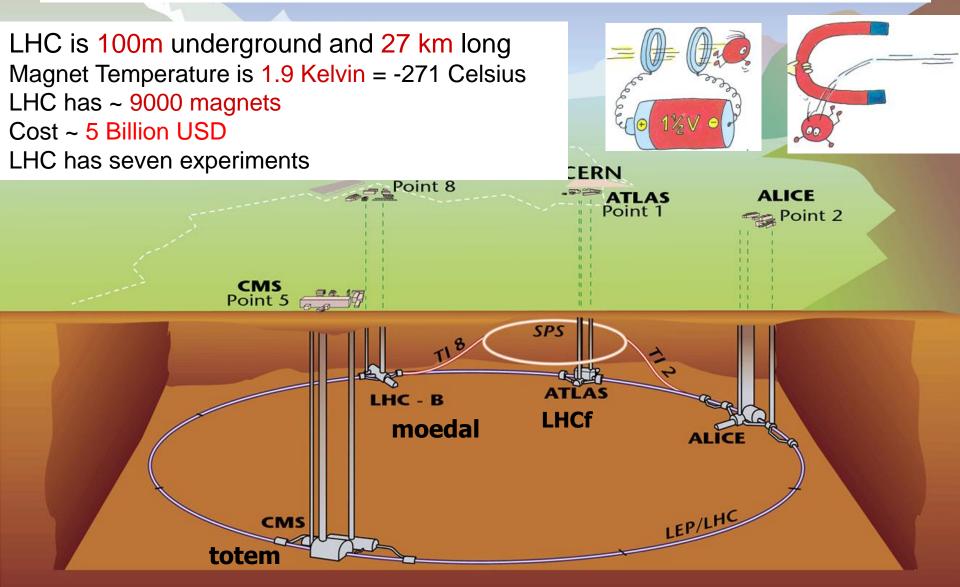
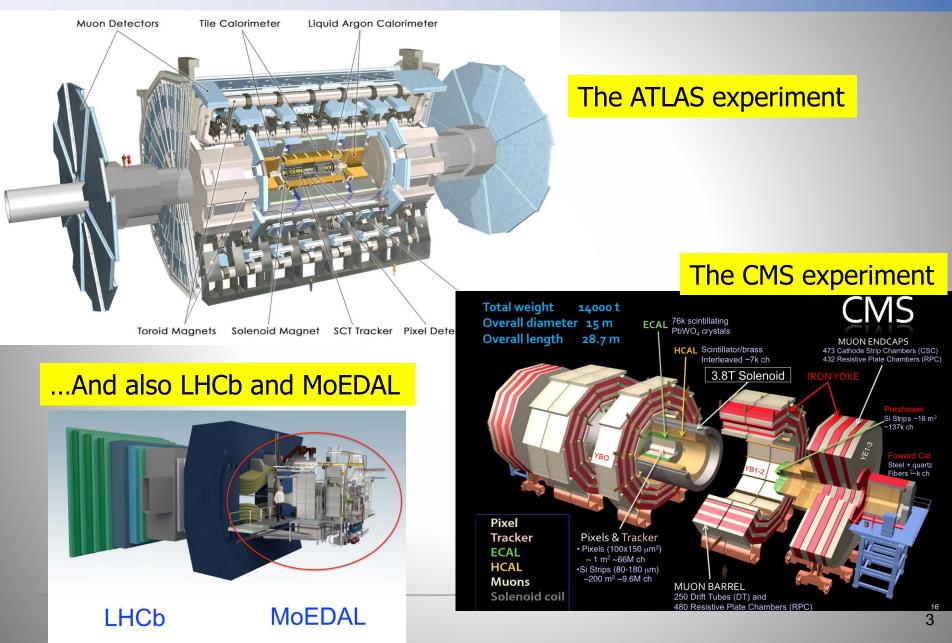

Searches for Long Lived Particles at the LHC – Present and Future

FR

Albert De Roeck CERN, Geneva, Switzerland Antwerp University Belgium UC-Davis California USA NTU, Singapore

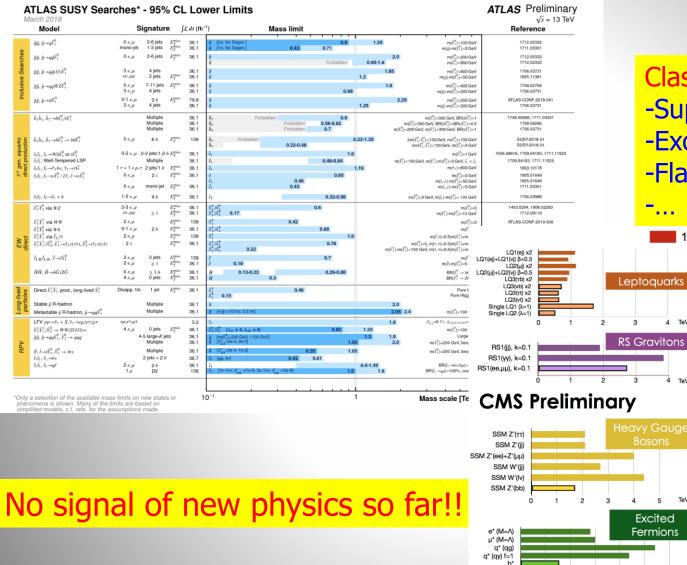
20th June 2019



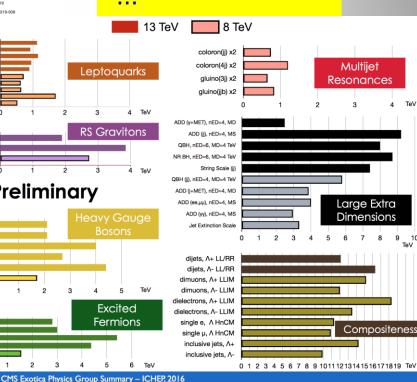

Outline

Introduction to long lived exotic particles: why do we care?
Challenges at and a few results from the LHC
New experiments for the LHC?
Other opportunities for LLPs searches
Summary/Outlook

The Flagship Project of CERN: the Large Hadron Collider



New Physics Hunters @ the LHC


LHC: So far no new physics

1 2 3 5

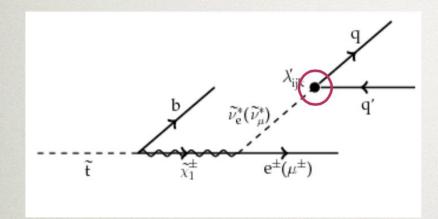
Classical Searches -Superymmetry -Exotica

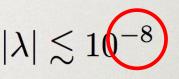
-Flavor Universality

Are we leaving no stones unturned?

- The LHC BSM searches are indispensable and should be continued in the new energy regime and with increasing statistics (higher mass, lower couplings)
- But are we looking at the right place and do we leave not stones unturned? -> Recent focus on long lived particles
- Time for more effort in thinking of complementary searches:
 -> What could the LHC miss with the present detectors?

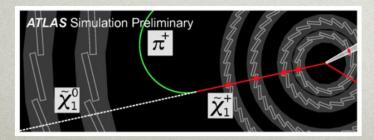
Are we looking at the right place?

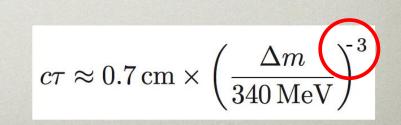



Searching for Long Lived Particles

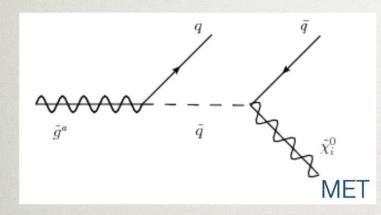
Long lifetimes arise from a hierarchy of scales or a small coupling

LLP Models: Supersymmetry

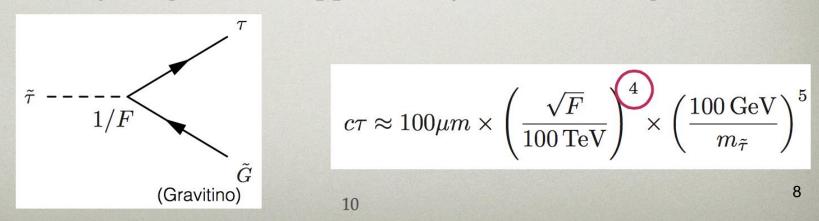

R-parity-violating SUSY:



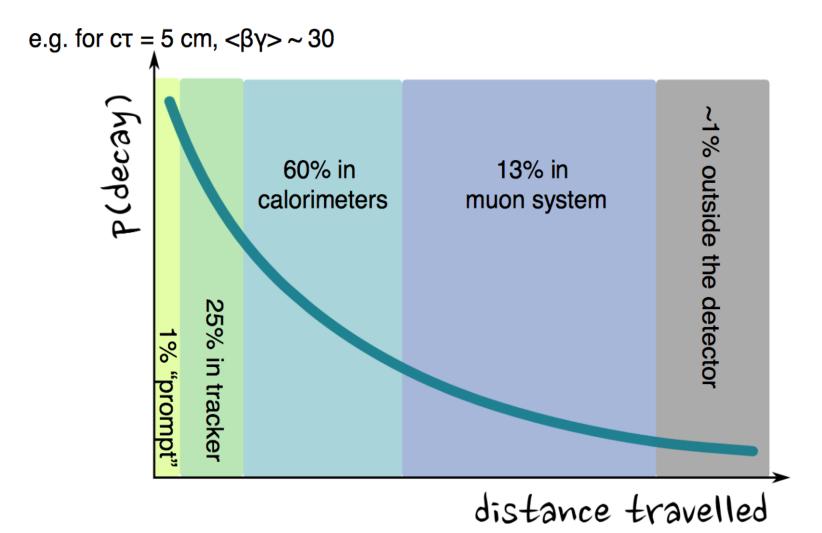
Pure weak-ino states:


• Electroweak symmetry gives degeneracy of NLSP-LSP masses if little mixing between Higgsino/gauginos

LLP Models: Supersymmetry Split SUSY:


• Models with decoupled supersymmetric scalars

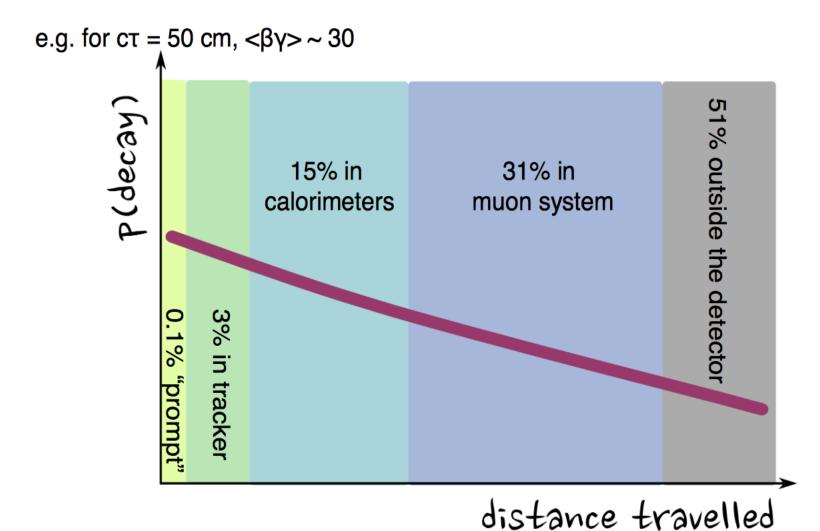
$$c\tau \approx 100 \mu m \times \left(\frac{m_{\tilde{q}}}{10^3\,{\rm TeV}}\right)^4 \times \left(\frac{{\rm TeV}}{m_{\tilde{g}}}\right)^5$$


Gauge mediation:

Decays to gravitino suppressed by SUSY-breaking scale

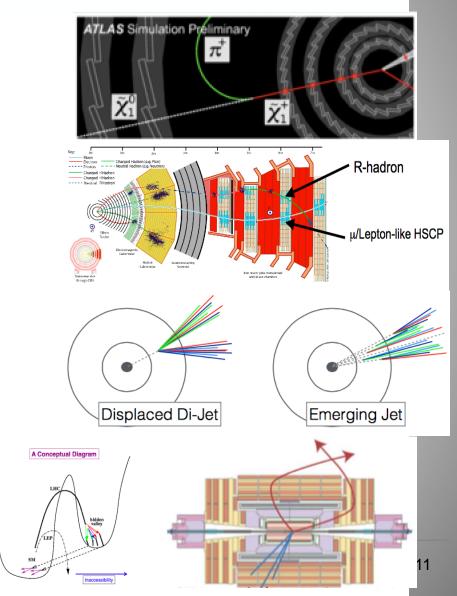
why do we need so many searches?

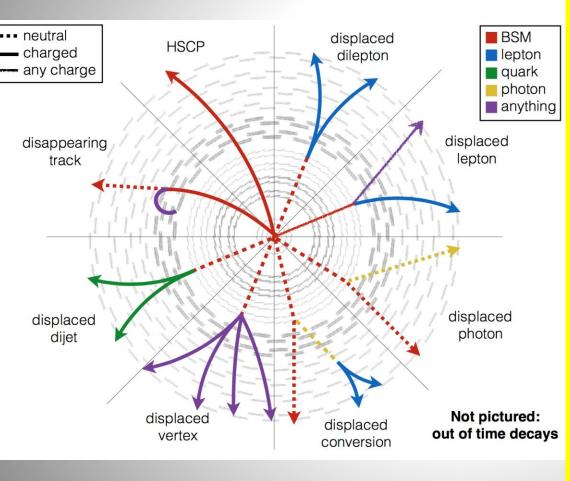
Even particles with a short proper lifetime can decay with a large lab-frame distance:



9

why do we need so many searches?


But if we want to consider particles with a longer lifetime, need a dramatically different search strategy!


Long Lived Particles

Long lifetimes arise from a hierarchy of scales or a small coupling

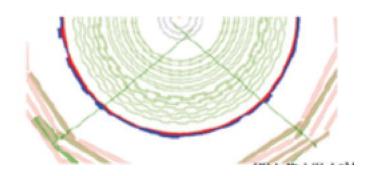
- RP Violating SUSY
- ASMB SUSY
- Gauge Mediated SUSY
- Split SUSY
- Hidden Valleys Models
- Dark QED/Dark Photons
- Monopoles
- Quirk Models
- Dark Matter Models
- Stable Sexaquarks
- Axion-Like Particles

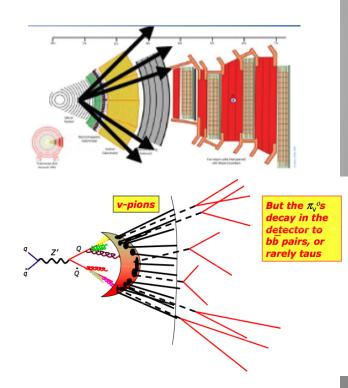
Long Lived Particles @LHC

Signatures

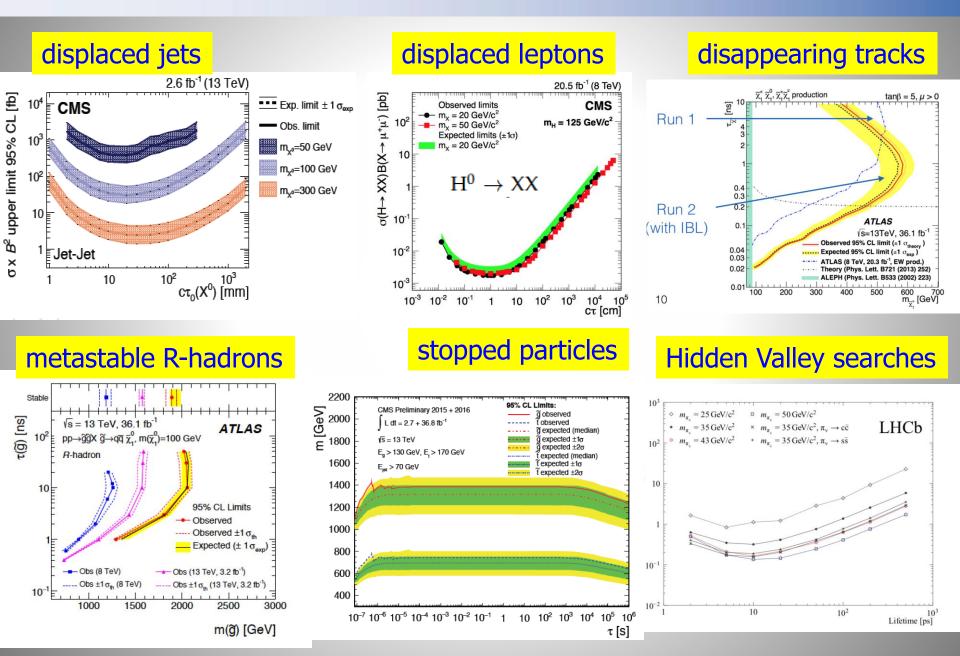
Some of the Challenges

Triggers: Tracking detectors are powerful but difficult to use in trigger

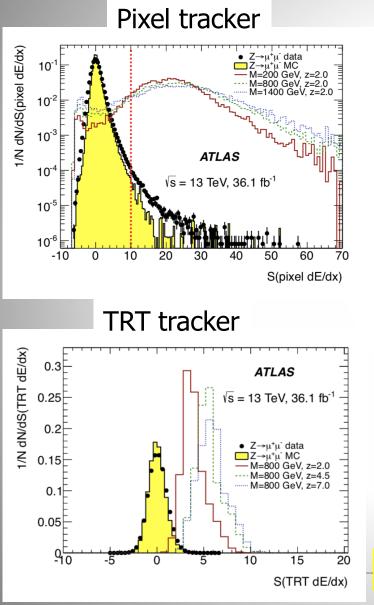

SM backgrounds often low. But need special studies (punch through, secondary interactions, tails, cosmics...)


Special reconstruction is often needed

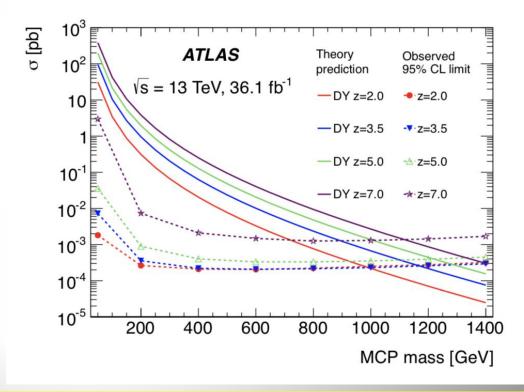
Some detector upgrades for High-Luminosity LHC (>2026) address these issues.


Long Lived Searches Overview

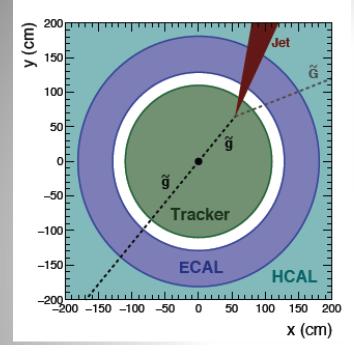
- Displaced jets, dijets, vertices
- Disappearing tracks
- Displaced leptons & lepton jets
- Displaced photons
- Dark photon decays
- Heavy Stable Charged Particles
- Stopped particles
- Emerging jets
- Monopoles stuck in material
- Heavy Neutral Lepton searches
- Strongly Interaction Massive Particles
- (others...new ideas...)

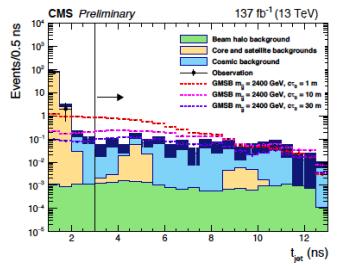


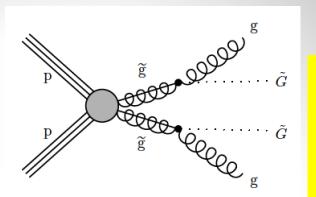
Long Lived Searches: Examples



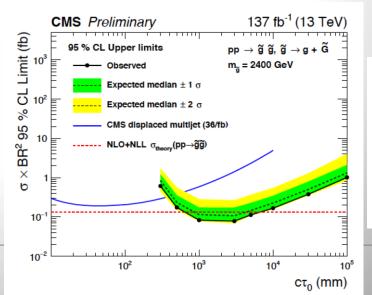
Multi Charged Particles


Use central tracker and de/dx measurement to search for particles with electric charges of 2e to 7e


arXiv:1812.03673

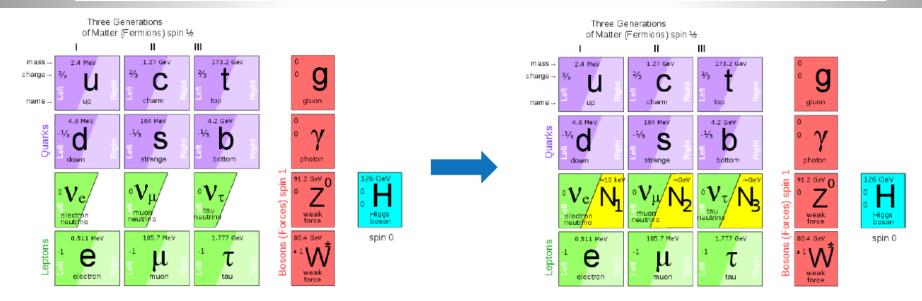


Exclusion between 50 GeV and 980-1220 GeV


Search for Delayed Jets

Background	Prediction
Beam halo	$0.02^{+0.06}_{-0.02}({\rm stat}){}^{+0.05}_{-0.01}({\rm syst})$
Core and satellite bunches	$0.11^{+0.09}_{-0.05}(stat){}^{+0.02}_{-0.02}(syst)$
Cosmics	$1.0^{+1.8}_{-1.0}({ m stat}){}^{+1.8}_{-1.0}({ m syst})$

EXO-19-001

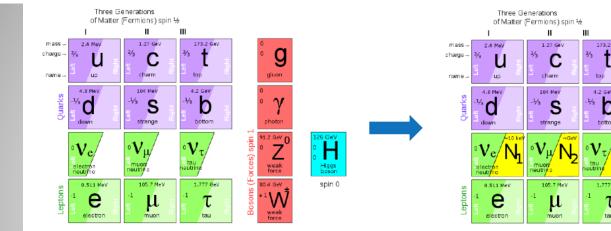

-Using the ECAL
precision timing
~200 ps
-Search for jets not
connected to the
primary vertex
-Data driven background estimate

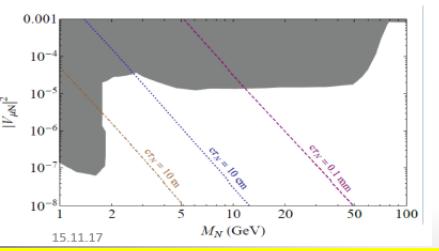
GMSB longlived gluino model search. Mass limits up to 2500 GeV

16

Example Scenario

Neutrino portal: vMSM (Neutrino Minimal Standard Model) Minimal extension of the SM fermion sector by three Right Handed (Majorana) Heavy Neutral Leptons (HNL): N1, N2, N3.

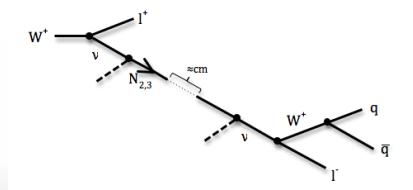

-The lightest singlet N₁ (mass \approx KeV): good dark matter candidate. -N₂, N₃ (mass in 100 MeV - GeV region):


- Mechanism to give masses to neutrinos
- Explain baryon asymmetry

D.Gorbunov, M.Shaposhnikov JHEP 0710 (2007) 015 17

Heavy Neutral Leptons

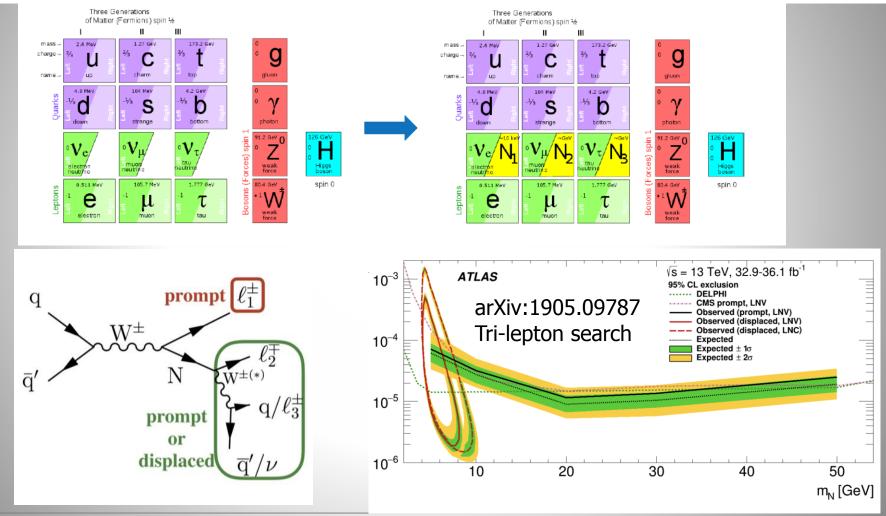
Neutrino portal: vMSM (Neutrino Minimal Standard Model) Minimal extension of the SM fermion sector by Right Handed HNLs: N1, N2, N3.

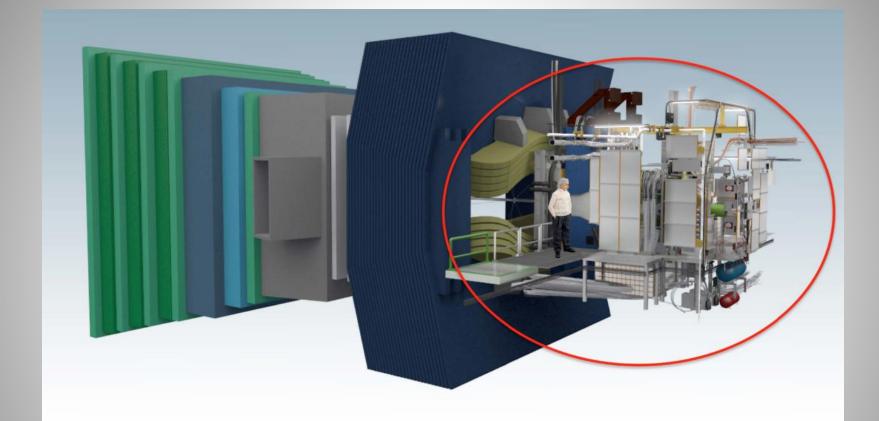

D.Gorbunov, M.Shaposhnikov JHEP 0710 (2007) 015

173.7 Ge

b

g


spin 0


First LHC results on prompt studies Majorana/Dirac? Now studies with displaced jets/lepton analyses. L~ 1m? 18

Search for Heavy Neutral Leptons

Neutrino portal: vMSM (Neutrino Minimal Standard Model) Minimal extension of the SM fermion sector by Right Handed HNLs: N1, N2, N3.

The MoEDAL Experiment

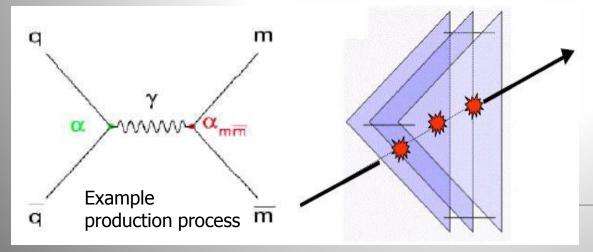
LHCb

MoEDAL

MoEDAL = ~ 70 physicists from 30 institutes and 14 countries -> MoEDAL is a passive detector, sensitive to new physics

Magnetic Monopoles

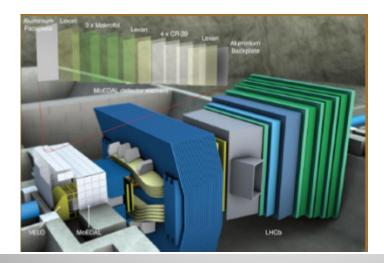
Magnetic Monopoles to explain the quantization of electric charge (Dirac '31)


$$\nabla \mathbf{.E} = 4\pi\rho_e$$
$$\nabla \mathbf{.B} = 4\pi\rho_m$$
$$-\nabla \times \mathbf{E} = \frac{1}{c}\frac{\partial \mathbf{B}}{\partial t} + \frac{4\pi}{c}\mathbf{j_m}$$
$$\nabla \times \mathbf{B} = \frac{1}{c}\frac{\partial \mathbf{E}}{\partial t} + \frac{4\pi}{c}\mathbf{j_e}$$
$$\mathbf{F} = q_e \left(\mathbf{E} + \mathbf{\underline{v}} \times \mathbf{B}\right) + q_m \left(\mathbf{B} - \mathbf{\underline{v}} \times \mathbf{E}\right)$$

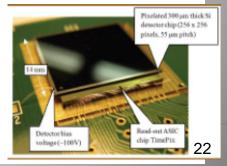
$$g = rac{q_m}{e} = rac{n}{2lpha_{
m e}} = n \cdot g_{
m D} pprox n \cdot 68.5$$
 g_D is the Dirac unit magnetic charge

•Simplifies the Maxwell equations!

- •Dirac: Charge quantization consequence of angular momentum quantization in the presence of monopole
- •'t Hooft, Polyakov: GUT monopoles
- •Cho-Maison: Electroweak monopoles in the TeV range. Recent discussion: arXiv:1602.01745


Collider signature: pair production of very highly ionizing particles!

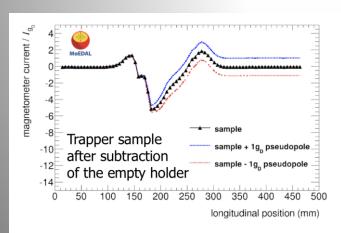
Monopoles will 'burn' through the plastic sheets of the experiment or get trapped in the dense material of the trapping detector

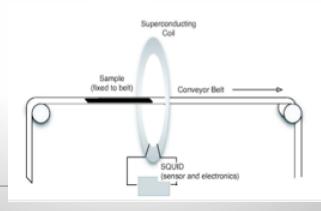

The MoEDAL Experiment

- -> Three subdetector systems
- Passive Nuclear Track-Etch Detectors (NTDs)
 - 120m² of CR39 and Makrofol (for very high ionization)
 - Detection threshold is "charge/ β > 5"
- Passive Trapping Detectors (MMTs)
 - 794 kg of aluminium bars
- MediPix chip based online radiation monitor system
 The NTD and MMT detectors are exchanged every year
 The removed 2018 detector are being analysed

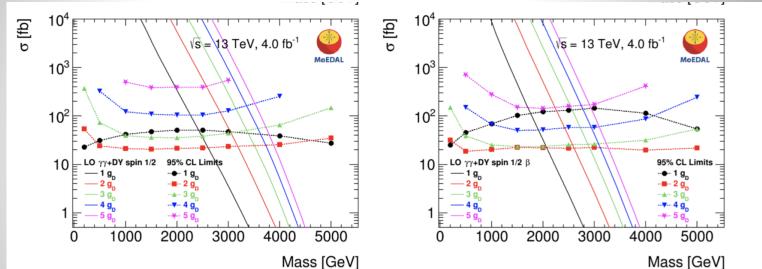
Magnetometer Measurements

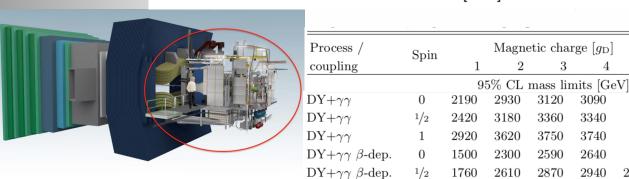
Laboratory of Natural Magnetism, ETH Zurich




DC-SQUID magnetometer

->Detection Method: Measure a persistent current induced in the superconducting coil of a sensitive SQUID magnetometer


A DC-SQUID rock magnetometer (2G Enterprises model 755)



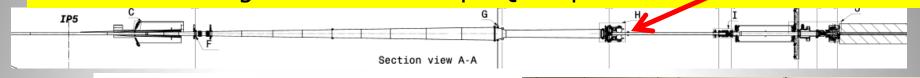
Monopole Searches: MoEDAL @ 13TeV

2016/2017 data analysis base on 794 kg Aluminium to "stop" the monopoles and search with a SQUID precision magnet (4.0fb⁻¹) arXiv:1903.08491

 $\mathbf{2}$

 $DY + \gamma \gamma \beta$ -dep.

MoEDAL


LHCb

 Limits for different monopole charges •First monopole search result @LHC at 13 TeV No signal yet... ⊗

Monopoles Stopped in the Beampipe

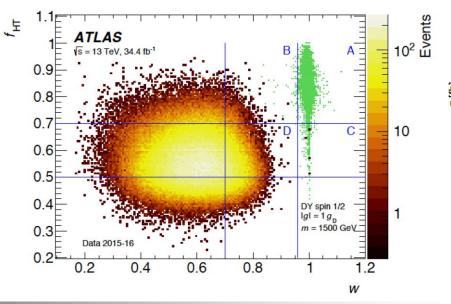
ADR et al., Eur. Phys .J. C72 (2012) 2212

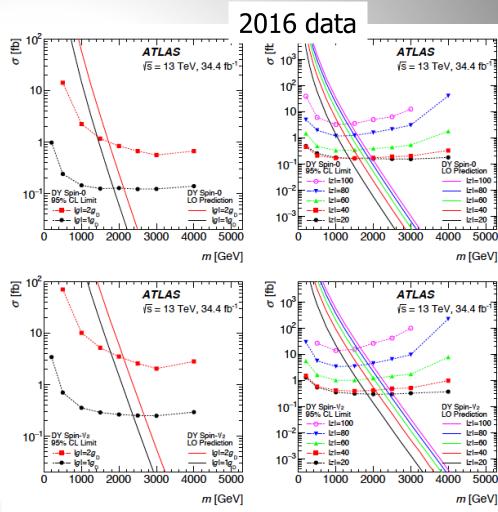
Test performed with pieces of material from the LHC from 18 m away from the interaction region in 2012: set up SQUID procedure

MONOPOLES CMS beam pipe to be mined for monopoles

18/2/2019!!

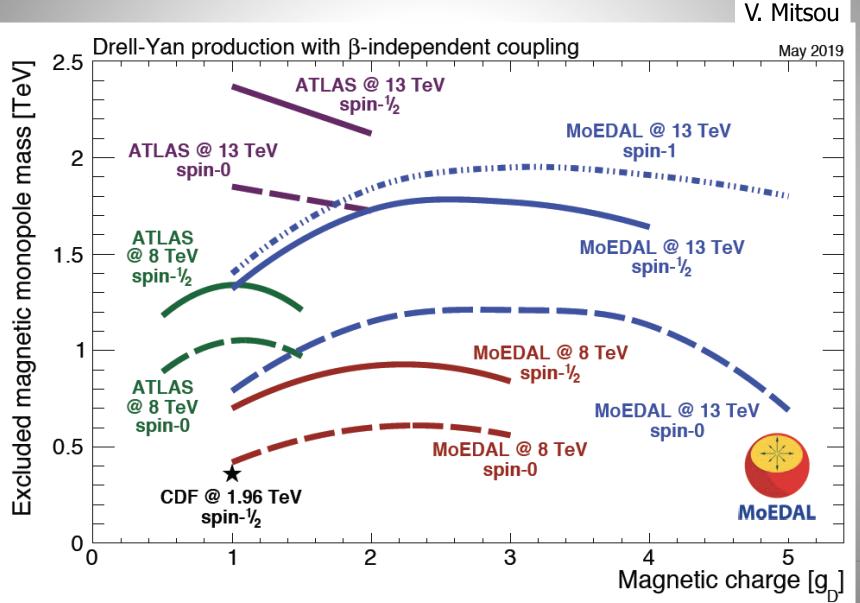
On 18 February the CMS and MoEDAL collaborations at CERN signed an agreement that will see a 6 m-long section of the CMS beam pipe cut into pieces and fed into a SQUID in the name of fundamental research. The 4 cm diameter beryllium tube – which was in place (right) from 2008 until its replacement by a new beampipe for LHC Run 2 in 2013 – is now


A beampipe analysis effort has been put into place in MoEDAL -> CMS beampipe being prepared for the ETH SQUID in Alberta right now Other beampipes under discussion (RHIC, BaBar...)

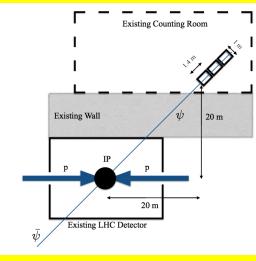

 $|g| \ge 4q_{-}$

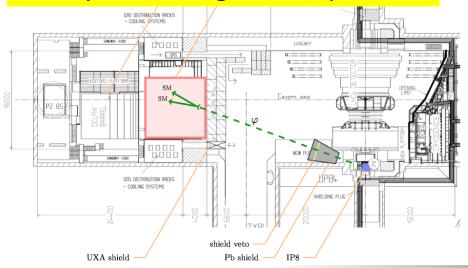
New: ATLAS Monopole Search

arXiv:1903.08491

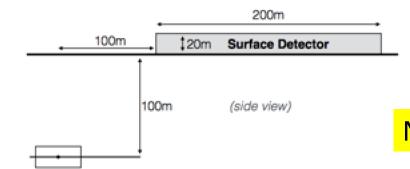

Use high ionization in the transition radiation tracker and pencil-like energy deposit in the ECAL

Results interpreted via Drell-Yan production for Dirac charges 1 and 2


LHC Monopole Searches


27

Proposals for New Experiments @LHC

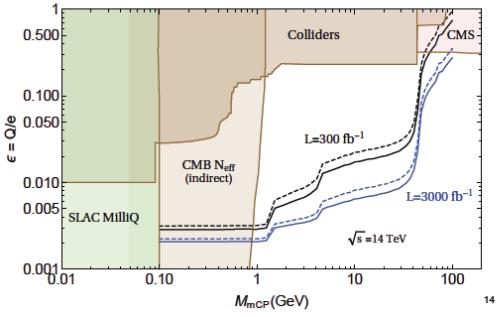

MilliQan: searches for millicharged particles MAPP: Same from MoEDAL

CODEX-b: searches for long lived weakly interacting neutral particles

MATHUSLA: searches for long lived weakly interacting neutral particles

FASER: searches for long lived dark photons-like particles

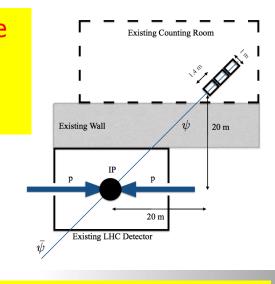
Particles with Milli-Charges?


"New" idea -> Hunting for particles with charges ~ 0.3-0.001e Baseline paper: arXiv:1410.6816 Proposal for a new experiment/CMS subdetector. Demonstrator (1%) taking data since mid-2017

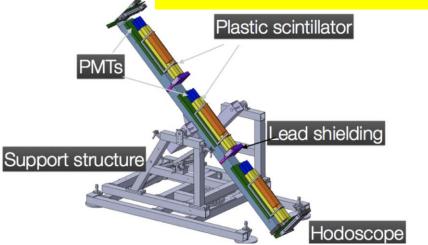
A Letter of Intent to Install a Milli-charged Particle Detector at

arXiv:1607.04669

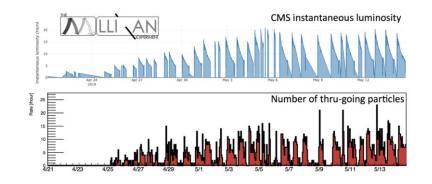
LHC P5


Austin Ball,¹ Jim Brooke,² Claudio Campagnari,³ Albert De Roeck,¹ Brian Francis,⁴
Martin Gastal,¹ Frank Golf,³ Joel Goldstein,² Andy Haas,⁵ Christopher S. Hill,⁴ Eder
Izaguirre,⁶ Benjamin Kaplan,⁵ Gabriel Magill,^{7,6} Bennett Marsh,³ David Miller,⁸ Theo
Prins,¹ Harry Shakeshaft,¹ David Stuart,³ Max Swiatlowski,⁸ and Itay Yavin^{7,6}

"Dark QED" ie QED in the dark sector that kinematically mixes withthe SM QED.
The EDGES anomaly...?

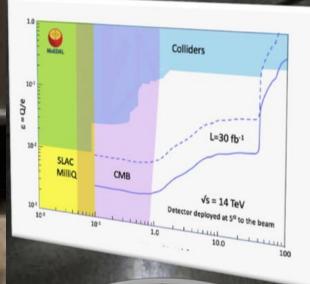

Detection technique: scintillators-> low photon signals

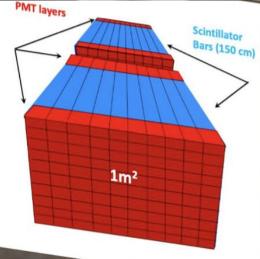
MilliQan Experiment


MilliQan Experiment

Installed demonstrator in 2017

- In order to verify the feasibility and optimize the design of the experiment thoroughly, ~1% of the detector is installed as a "demonstrator"
- Took data since September 2017 $\rightarrow \sim 100 \text{ fb}^{-1} \text{ of data on tap}$
- First physics paper on these data?

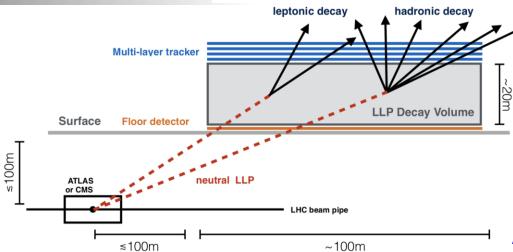

Installed demonstrator (before covering with panels) Slab2 2x3



Dominant background: dark current pulses in the PMTs in coincidence with environmental radioactivity and cosmic rays New design under study: 3×80 cm $\rightarrow 4 \times 60$ cm scintillator bars

MAPP* MoEDAL's Upgrade for RUN-3 *(MoEDAL Apparatus for Penetrating Particles)

- The Milli-charged particle (mQP) detector is a 1m x 1m x (2 x 1.5m) scintillator array, pointing to IP, in well shielded area of LHC Point 8 (LHCb)
- Placed in UGC8 gallery ~100m underground Positioned at 55m from IP, 50m through rock, in the horizontal beam plane
- Deployed from 5° to the beam (at 55m) to 25° to the beam (at 26 m)
- 7-10m decay zones available in from of
 Uses quadruple coincide between the two scintillator bars) sections (2 PMTs per bar)
 Active veto against showers in rock
 Under construction during current shutdown
- Due to start data taking in LHC's RUN-3

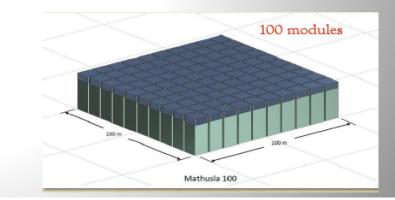

MATHUSLA

A Letter of Intent for MATHUSLA: a dedicated displaced vertex detector above ATLAS or CMS

MATHUSLA!

Cristiano Alpigiani,^a Austin Ball,^o Liron Barak,^c James Beacham,^{ah} Yan Benhammo,^c Tingting Cao,^c Paolo Camarri,^{f,g} Roberto Cardarelli,^f Mario Rodríguez-Cahuantzi,^h John Paul Chou,^d David Curtin,^b Miriam Diamond,^e Giuseppe Di Sciascio,^f Marco Drewes,^x Sarah C. Eno,^u Erez Etzion,^c Rouven Essig,^q Jared Evans,^v Oliver Fischer,^w Stefano Giagu,^k Brandon Gomes,^d Andy Haas,^l Yuekun Heng,^z Giuseppe Iaselli,^{aa} Ken Johns,^m Muge Karagoz,^u Luke Kasper,^d Audrey Kvam,^a Dragoslav Lazic,^{ae} Liang Li,^{af} Barbara Liberti,^f Zhen Liu,^y Henry Lubatti,^a Giovanni Marsella,ⁿ Matthew McCullough,^o David McKeen,^p Patrick Meade,^q Gilad Mizrachi,^c David Morrissey,^p Meny Raviv Moshe,^c Karen Salomé Caballero-Mora,^j Piter A. Paye Mamani,^{ab} Antonio Policicchio,^k Mason Proffitt,^a Marina Reggiani-Guzzo,^{ad} Joe Rothberg,^a Rinaldo Santonico,^{f,g} Marco Schioppa,^{ag} Jessie Shelton,^t Brian Shuve,^s Martin A. Subieta Vasquez,^{ab} Daniel Stolarski,^r Albert de Roeck,^o Arturo Fernández Téllez,^h Guillermo Tejeda Muñoz,^h Mario Iván Martínez Hernández,^h Yiftah Silver,^c Steffie Ann Thayil,^d Emma Torro,^a Yuhsin Tsai,^u Juan Carlos Arteaga-Velázquez,ⁱ Gordon Watts,^a Charles Young,^e Jose Zurita.^{w,ac}

arXiv:1811.00927



A proposal for a large area surface array to detect ultra long lived particles coming from the pp collisions

Aim to cover the range $c\tau \lesssim 10^7 - 10^8 \text{ m}.$

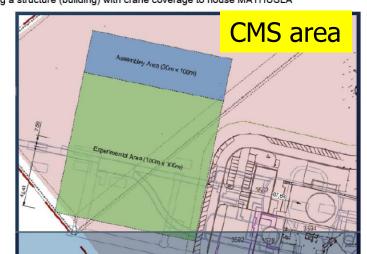
~ BBN constrained inspired

Physic case arXiv:1806.07396

Detector surface array eg above ATLAS or CMS: $\sim (200m)^2$

MATHUSLA

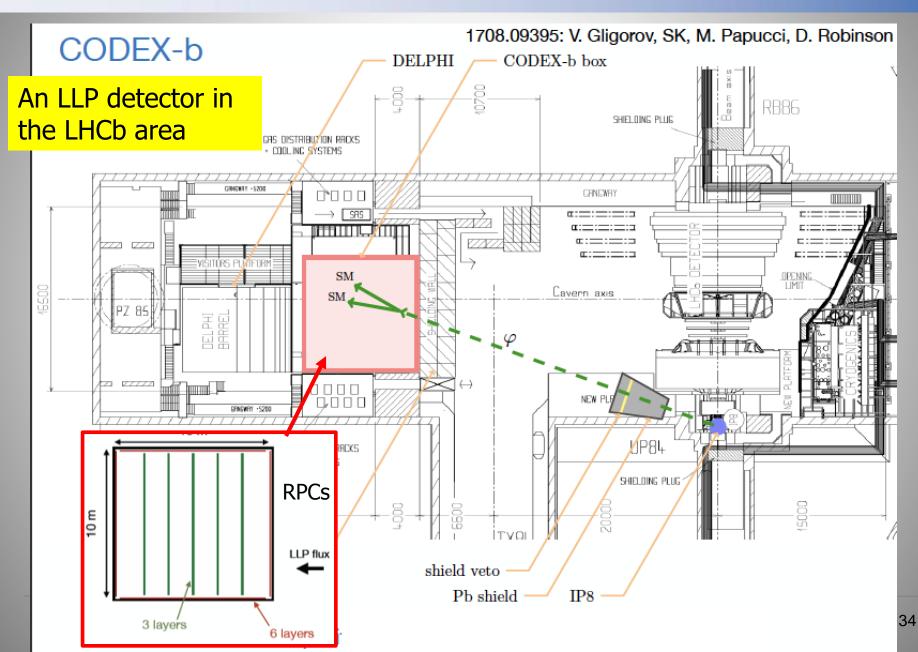
MATHUSLA: MAsive Timing Hodoscope for Ultra Stable neutraL pArticles


- The current MATHUSLA detector concept is 100x100 m² located at the surface of CMS
- · Currently working with CERN civil engineers to:
 - · determine the feasibility of excavating to install MATHUSLA slightly below surface
 - · and feasibility of building a structure (building) with crane coverage to house MATHUSLA

Recent developments

- Not on surface but make 5-10m deep hole to put it in.
- Size to 100mx100m
- Use scintillators instead of RPCs for the tracking stations

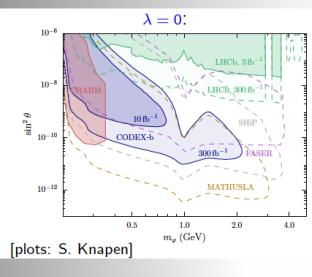
- 30m x 100m assembly area
- ~7.5m offset to center of beam
- ~68m to IP

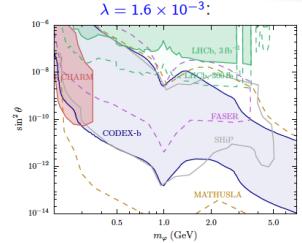


0.100 0.010 h→XX, m_x = 30 GeV Br(h→XX) HL-LHC, 3000fb-1 MATHUSLA physics 0.001 BBN ATLAS MS white paper MATHUSLA100 10^{-4} MATHUSLA200 MATHUSLA CMS 100x100 arXiv:1806.07396 10⁻⁵ MATHUSLA CMS 100x100 side+forward 10-6 10⁵ 10^{7} 0.1 10 1000

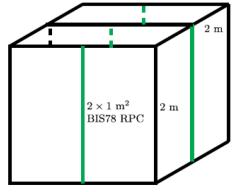
 $c\tau_X(m)$

33


CODEX-b Proposal



CODEX-b Proposal


Example: Higgs-scalar mixing

• Minimal extension of Higgs sector: $\mathcal{L} \sim \mu \varphi H H^{\dagger} + \frac{\lambda}{2} \varphi^2 H H^{\dagger}$

- Scalar portal \rightarrow Dark Higgs/scalars
- ${\scriptstyle \bullet}\,$ Neutrino portal \rightarrow Heavy Neutral Leptons
- $\bullet \ \mathsf{Pseudoscalar} \ \mathsf{portal} \to \mathsf{Axion-like} \ \mathsf{particles}$
- Vector portal \rightarrow Dark photon

- 2 × 2 × 2 m³ demonstrator for Run 3 \Rightarrow
- 6 faces + 1 inner station ⇒ 14 BIS78 triplet chambers.
- Enough space already in D1 area of the cavern once DAQ racks shifted out before EOY.

Demonstrator for Run 3

Limited background campaign in 2018 did not show nasty surprises

• Main goal: reconstruct K_L^0 's in the volume from IP8 during 2021-23.

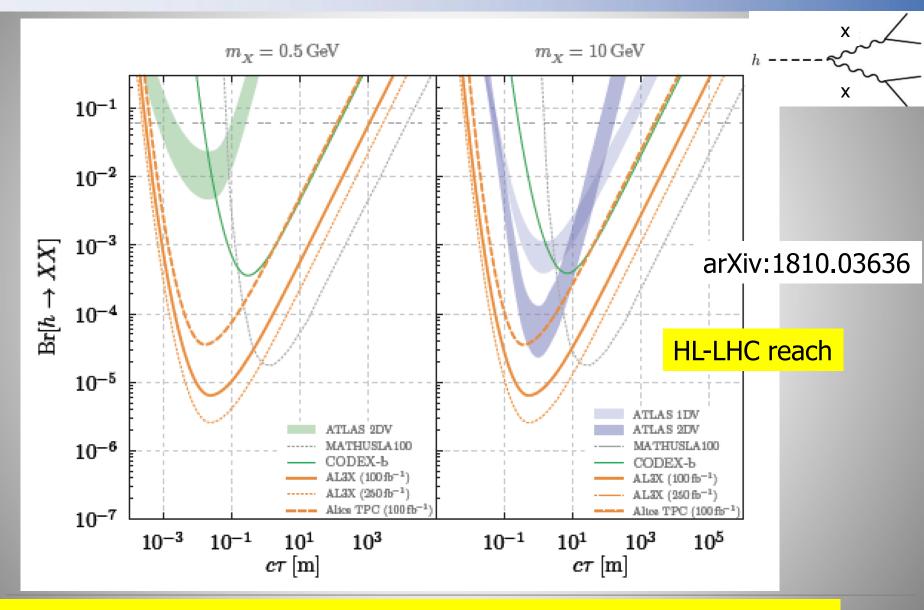
Re-using the ALICE detector?

A Laboratory for Long-Lived eXotics (AL3X)

Reuse the L3 magnet and (perhaps) the ALICE TPC

A 25 m A 25 m A 25 m A 25 m A 2 m

Similar strategy as for CODEX-b: use thick shield with active veto to reduce the backgrounds

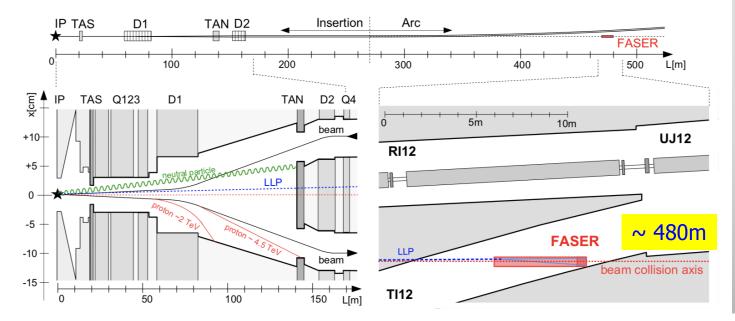

V. Gligorov, SK, B. Nachman, M. Papucci, D. Robinson: 1810.03636

36

For LHC Run 5

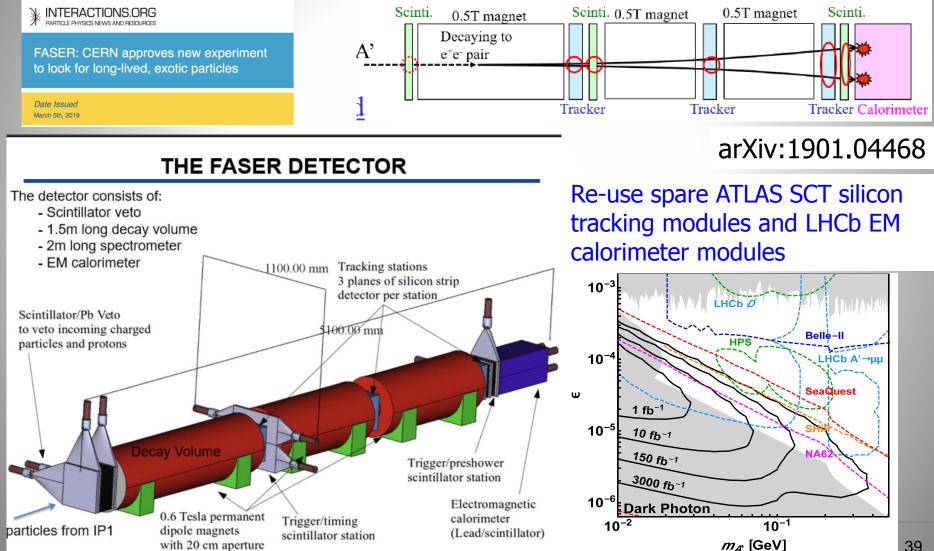
or later??

Physics Reach: Example



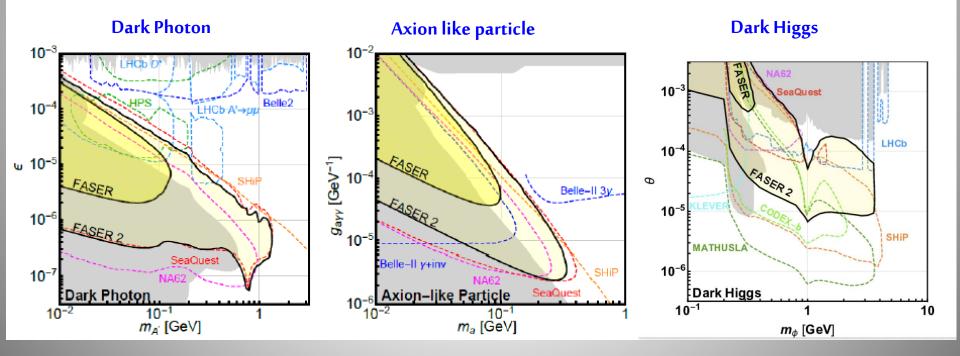
For low masses: MATHUSLA, CODEX-b and AL3X have a leading edge

The FASER Experiment

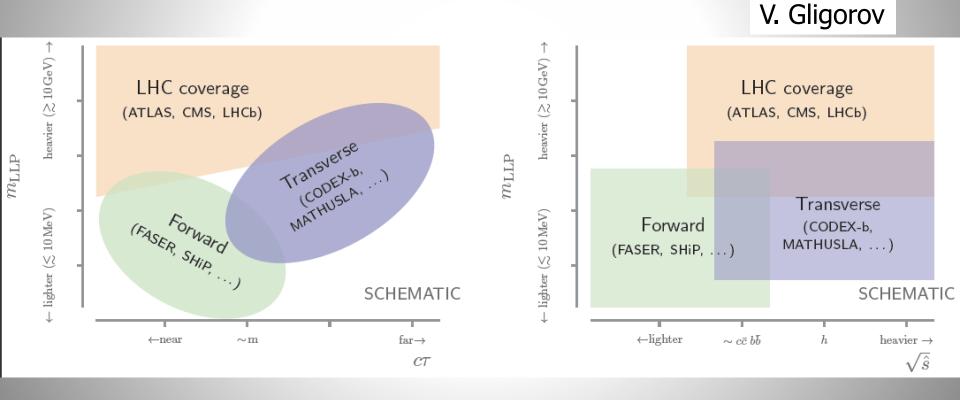

FASER, ForwArd Search ExpeRiment, will search for light, extremely weakly-interacting particles at the LHC

FASER is in the line-of-sight, behind 100m of rock shielding. The LHC magnets sweep away charged particle backgrounds hence low radiation and low beam backgrounds

FASER Phase 1 Approval


The FASER experiment (phase 1) has been approved March 5th

FASER Phase 2


For the HL-LHC run..

- FASER2 is a potential upgrade to run in HL-LHC with bigger dimensions of the detector.
 - > Radius: 1 m To open the acceptance for decays from Ds & Bs
 - > Decay volume length: 5 m
- FASER2 can explore much larger parameter space in dark sectors.

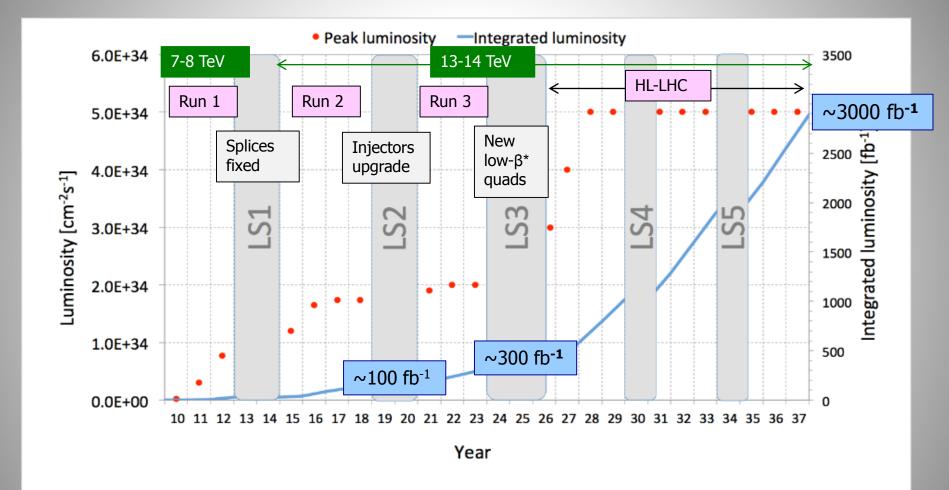
Experimental Complementarity

A rough sketch for the coverage for feebly interacting particles

Status of the Various Projects

Lifetime frontier

Based on Simon Knapen FNAL seminar fall 2018 (*)


Supplementary detectors

			Higgs Decay	B meson decay	π,η - decay dark photon	Progress	Cost		
FASER			(√)	V	First phase approved and funded	\$			
	CODEX-b		\checkmark	\checkmark		Sub-collaboratio formed	on \$		
MilliQan			(√)		Sub-collaboratio formed	on \$			
	AL3X		\checkmark	\checkmark	\checkmark	Proof of concept	t \$\$		
MATHUSLA		\checkmark	(√)	Letter of Intent		\$\$			
	SHIP			\checkmark	1	Conceptual design report	\$\$\$		
Rı	un2	LS2	Run3	LS3	HL-LH		ASER1/MilliQan(?)		
20	018	2020	202	3	2027	- r	installation by 202		
	itial study	Mini instal	BG mea- surements	BG mea- surements install • MATHUSLA, C		ATHUSLA, CODEX			

(*) Experiments have different capabilities for measuring the LLPs

<-b,

LHC Future Running till ~2037

Approved program at CERN to collect 3-4 ab⁻¹ with the LHC (HL-LHC) Maximize the reach for searches and for precision measurements (eg Higgs)

CERN High Beam Intensity Initiative

1(

Status and Prospects of PHYSICS BEYOND COLLIDERS at CERN

Study Group mandated by the CERN Management to prepare the next European HEP strategy update (2019-20 (coordination: J. Jäckel, M. Lamont, C.V.)

Excerpt from the mandate:

"Explore the opportunities offered by the CERN accelerator complex to address some of today's outstanding questions in particle physics through experiments complementary to high-energy colliders and other initiatives in the world." Time scale: next 2 decades

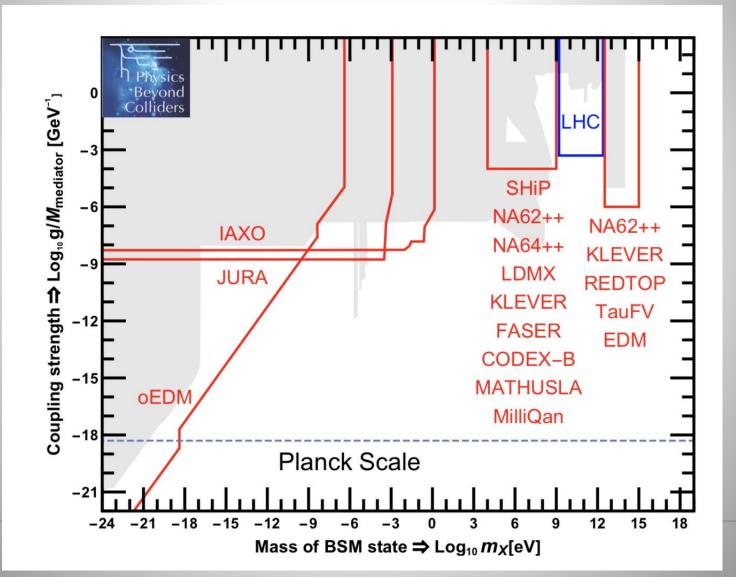
Physics Beyond Colliders at CERN

Many studies on long lived particles

Summary plots of the reach are being completed for the European Strategy Document (November)

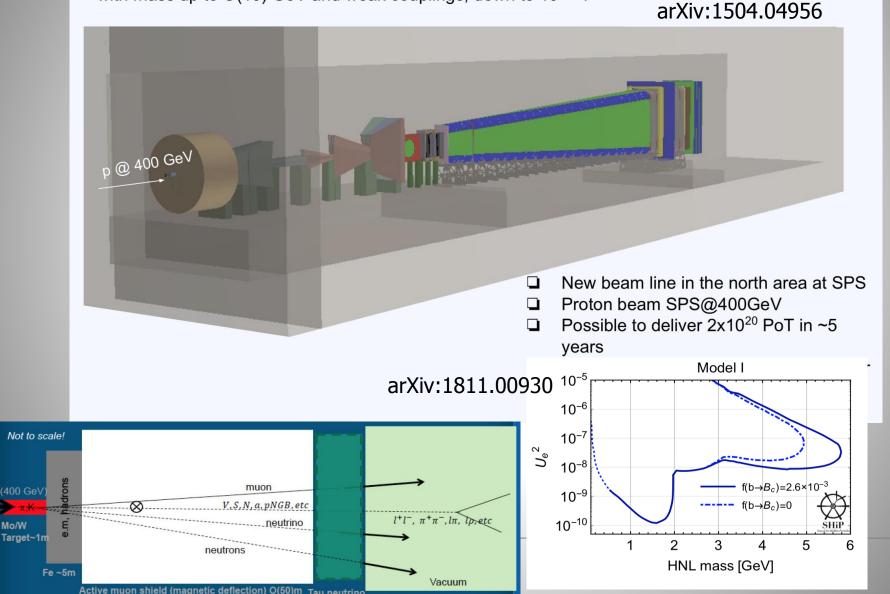
Last workshop (January '19) https://indico.cern.ch/event/755856/

Next workshop November 5-6



NA62, NA64, SHIP, LHC new experiments...

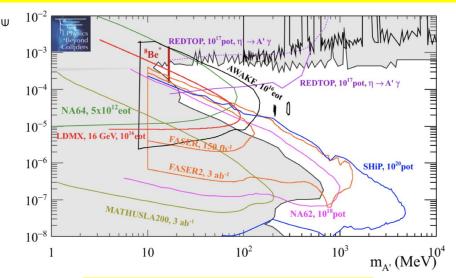
1


New Possible Experiments

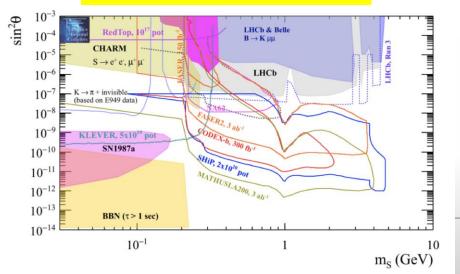
From the beyond collider study document: arXiv:1902.00260

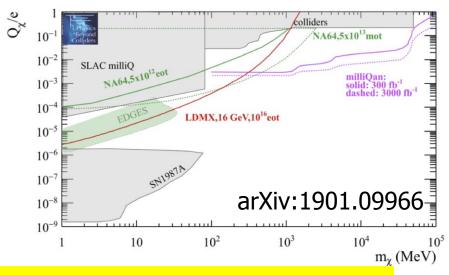
SHiP Beam Dump Experiment Proposal

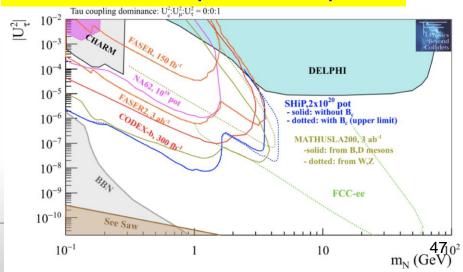
SHiP is a proposed intensity-frontier experiment aiming to search for neutral hidden particles with mass up to O(10) GeV and weak couplings, down to 10^{-10} .


Mo/W

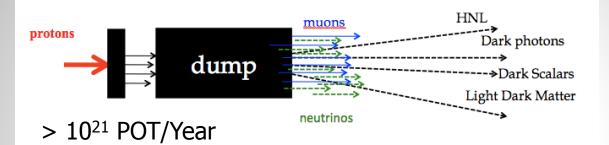
46


Sensitivity Summaries

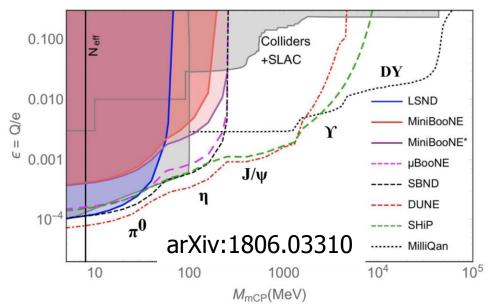

Search for dark photons (visible mode)



Search for dark scalars



Search for heavy neutral leptons


Beam Dump Experiments

High intensity frontier for low mass particles with very weak couplings ->upcoming neutrino experiments (SBL, LBL) foresee very high intensity beams

Near Detector: few 100m away from the dump

https://indico.fnal.gov/event/18430/

These experiments can perform searches for low mass New Physics particles eg -HNL/sterile neutrinos -dark photons -ALPs -mini/millicharges

<- Example for millicharges FerMINI @FNAL? 48

. . .

More Milli-Charge Hunting

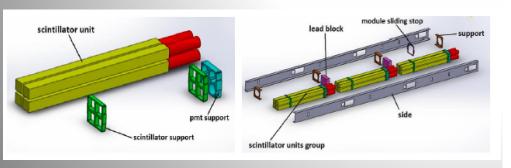
A proposal for milli-charges at FNAL @ MINOS near detector Submitted end of May

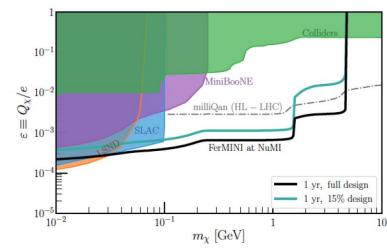
FerMINI: Fermilab Search for Milicharged Particle

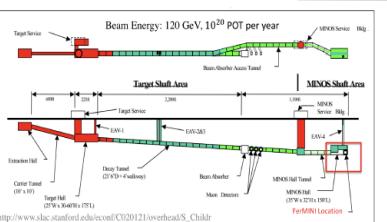
J. F. Hirschauer, (Principle Investigator) and Y.-D. Tsai (Co-Investigator)
 Fermi National Accelerator Laboratory, Batavia, IL 60510, USA
 A. Haas (Co-Investigator)
 New York University, New York, NY 10003, USA
 C. Hill (Co-Investigator)

Ohio State University, Columbus, OH 43210, USA

D. Miller (Co-Investigator)


University of Chicago, Chicago, IL 60637, USA


D. Stuart (Co-Investigator)


University of California, Santa Barbara, CA 93106-9530, USA

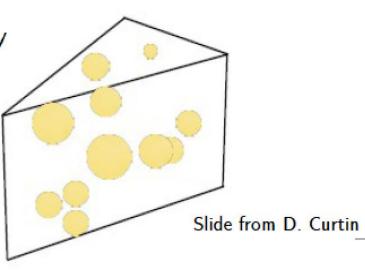
See also: arXiv:1806.03310

Based on the MilliQan design

Current Neutral LLP Searches

at the LHC

Search	run	signal	LLP Daughters	LLP Scale	Parent Scale	Associated Objects	# LLP Decays	decay Location	decay Detector	L1 trigger
EXO-12-035-pas	8 TeV	GMSB neutralino → y + G	Y + MET	100-300 GeV	x2 + ~ 50	jets, MET	1	tracker	ECAL (timing)	one photon
EXO-14-017-pas	8 TeV	GMSB neutralino $\rightarrow \gamma + G$	Y + MET	200-300 GeV	x2 + ~ 50	MET	2	tracker	tracker (convers	Iphoton
1211.2472	7 TeV	H->XX	2 leptons	20+ GeV	100+ GeV	none	2	tracker	same	dilepton
1411.6530v2	8 TeV	H->XX, RPV SUSY	2 jets	50+ GeV	200+ GeV	none or jets	1	tracker	same	HT > 300 GeV
1411.6977	8 TeV	H->XX, RPV SUSY	2 leptons	20+ GeV	100+ GeV	none	1	tracker	same	dilepton
1409.4789	8 TeV	RPV SUSY	e and mu	0.5 - 1 TeV	x2	none	2	tracker	tracker, MS	one muon
			2x ~ anything	10+ GeV	100+ GeV	none	2	Muon System	same	Muon Rol
			2x ~ anything	10+ GeV	100+ GeV	none	2	HCAL	same	CalRatio
1409.0746	8 TeV	$H \rightarrow HV \rightarrow X X$	2 leptons	0.4 - 2 GeV	~ 100 GeV	none	2	tracker	same	standard lepton(s)
			2 leptons or							HARD MET,
1504.05162	8 TeV	SUSY (split, rpv, gmsb)	5+ charges	10+ GeV	600+ GeV	various		tracker	same	Jet, lepton
	7tev							0.4-4.8mm		single track >
1412.3021	0.62/fb	H->XX	2 quarks	25 - 50 GeV	100 GeV	none	1	From beam	tracker	1.5 - 3.5 GeV
	EXO-12-035-pas EXO-14-017-pas 1211.2472 1411.6530v2 1411.6977 1409.4789 1504.03634 1501.04020 1409.0746 1504.05162	EXO-12-035-pas 8 TeV EXO-14-017-pas 8 TeV 1211.2472 7 TeV 1411.6530v2 8 TeV 1409.4789 8 TeV 1409.4789 8 TeV 1504.03634 8 TeV 1501.04020 8 TeV 1409.0746 8 TeV 1504.05162 8 TeV	EXO-12-035-pas 8 TeV GMSB neutralino → γ + G EXO-14-017-pas 8 TeV GMSB neutralino → γ + G 1211.2472 7 TeV H->XX 1411.6530v2 8 TeV H->XX, RPV SUSY 1411.6977 8 TeV H->XX, RPV SUSY 1409.4789 8 TeV H->XX, RPV SUSY 1504.03634 8 TeV H->XX, HV Z', Stealth SUSY 1409.0746 8 TeV H->XX 1504.05162 8 TeV SUSY (split, rpv, gmsb) 7tev 7tev 7tev	SearchrunsignalDaughtersEXO-12-035-pas8 TeVGMSB neutralino $\rightarrow \gamma + G$ $\gamma + MET$ EXO-14-017-pas8 TeVGMSB neutralino $\rightarrow \gamma + G$ $\gamma + MET$ 1211.24727 TeVH \rightarrow XX2 leptons1411.6530v28 TeVH \rightarrow XX, RPV SUSY2 jets1411.69778 TeVH \rightarrow XX, RPV SUSY2 leptons1409.47898 TeVH \rightarrow XX, RPV SUSYe and mu1504.036348 TeVH \rightarrow XX, HV Z', Stealth SUSY $2x \sim$ anything1504.051628 TeVH \rightarrow HV \rightarrow X X2 leptons1504.051628 TeVSUSY (split, rpv, gmsb)5+ charges7tev7tev7tev7tev	SearchrunsignalDaughtersScaleEXO-12-035-pas8 TeVGMSB neutralino \rightarrow Y + GY + MET100-300 GeVEXO-14-017-pas8 TeVGMSB neutralino \rightarrow Y + GY + MET200-300 GeV1211.24727 TeVH->XX2 leptons20+ GeV1411.6530v28 TeVH->XX, RPV SUSY2 jets50+ GeV1411.69778 TeVH->XX, RPV SUSY2 leptons20+ GeV1409.47898 TeVH->XX, RPV SUSY2 leptons20+ GeV1504.036348 TeVH->XX, RPV SUSY2 leptons10+ GeV1501.040208 TeVH->XX2x ~ anything10+ GeV1409.07468 TeVH → HV → X X2 leptons0.4 - 2 GeV1504.051628 TeVSUSY (split, rpv, gmsb)5+ charges10+ GeV7lev7lev7lev7lev7lev	SearchrunsignalDaughtersScaleScaleEXO-12-035-pas8 TeVGMSB neutralino $\rightarrow \gamma + G$ $\gamma + MET$ 100-300 GeV $x2 + -50$ EXO-14-017-pas8 TeVGMSB neutralino $\rightarrow \gamma + G$ $\gamma + MET$ 200-300 GeV $x2 + -50$ 1211.24727 TeVH->XX2 leptons20+ GeV100+ GeV1411.6530v28 TeVH->XX, RPV SUSY2 jets50+ GeV200+ GeV1411.69778 TeVH->XX, RPV SUSY2 leptons20+ GeV100+ GeV1409.47898 TeVRPV SUSYe and mu0.5 - 1 TeV $x2$ 1504.036348 TeVH->XX2x ~ anything10+ GeV100+ GeV1409.07468 TeVH->XX2 leptons0.4 - 2 GeV100 + GeV1504.051628 TeVSUSY (split, rpv, gmsb)5+ charges10+ GeV600+ GeV7tev7tev7tev7tev7tev7tev7tev	SearchrunsignalDaughtersScaleScaleObjectsEXO-12-035-pas8 TeVGMSB neutralino $\rightarrow \gamma + G$ $\gamma + MET$ 100-300 GeV $x2 + -50$ jets, METEXO-14-017-pas8 TeVGMSB neutralino $\rightarrow \gamma + G$ $\gamma + MET$ 200-300 GeV $x2 + -50$ MET1211.24727 TeVH $\rightarrow XX$ 2 leptons20+ GeV100+ GeVnone1411.6530v28 TeVH $\rightarrow XX$, RPV SUSY2 jets50+ GeV200+ GeVnone or jets1411.69778 TeVH $\rightarrow XX$, RPV SUSY2 leptons20+ GeV100+ GeVnone1409.47898 TeVH $\rightarrow XX$, RPV SUSY2 leptons20+ GeV100+ GeVnone1504.036348 TeVH $\rightarrow XX$, HV Z', Stealth SUSY $2x \sim$ anything10+ GeV100+ GeVnone1501.040208 TeVH $\rightarrow XX$ 2 leptons0.4 - 2 GeV100+ GeVnone1409.07468 TeVH $\rightarrow HV \rightarrow X X$ 2 leptons or5+ charges10+ GeV600+ GeVvarious7tev7tev99999910+ GeV100+ GeVnone	SearchrunsignalDaughtersScaleScaleObjectsDecaysEXO-12-035-pas8 TeVGMSB neutralino $\rightarrow \gamma + G$ $\gamma + MET$ 100-300 GeV $x2 + \sim 50$ jets, MET1EXO-14-017-pas8 TeVGMSB neutralino $\rightarrow \gamma + G$ $\gamma + MET$ 200-300 GeV $x2 + \sim 50$ MET21211.24727 TeVH $\rightarrow XX$ 2 leptons20+ GeV100+ GeVnone21411.6530v28 TeVH $\rightarrow XX$, RPV SUSY2 jets50+ GeV200+ GeVnone or jets11411.69778 TeVH $\rightarrow XX$, RPV SUSY2 leptons20+ GeV100+ GeVnone11409.47898 TeVH $\rightarrow XX$, RPV SUSY2 leptons20+ GeV100+ GeVnone21504.036348 TeVH $\rightarrow XX$, HV Z', Stealth SUSY $2x \sim$ anything10+ GeV100+ GeVnone21501.040208 TeVH $\rightarrow XX$ $2x \sim$ anything10+ GeV100+ GeVnone21409.07468 TeVH $\rightarrow XX$ 2 leptons $0.4 - 2$ GeV100+ GeVnone21504.051628 TeVSUSY (split, rpv, gmsb)5+ charges10+ GeV600+ GeVvarious	SearchrunsignalDaughtersScaleScaleScaleObjectsDecaysLocationEXO-12-035-pas8 TeVGMSB neutralino \rightarrow y + Gy + MET100-300 GeVx2 + ~ 50jets, MET1trackerEXO-14-017-pas8 TeVGMSB neutralino \rightarrow y + Gy + MET200-300 GeVx2 + ~ 50MET2tracker1211.24727 TeVH->XX2 leptons20+ GeV100+ GeVnone2tracker1411.6530v28 TeVH->XX, RPV SUSY2 jets50+ GeV200+ GeVnone or jets1tracker1411.69778 TeVH->XX, RPV SUSY2 leptons20+ GeV100+ GeVnone1tracker1409.47898 TeVH->XX, HV Z', Stealth SUSY2x ~ anything10+ GeV100+ GeVnone2Muon System1504.036348 TeVH->XX2 leptons0.4 - 2 GeV100+ GeVnone2HCAL1409.07468 TeVH \rightarrow HV \rightarrow XX2 leptons0.4 - 2 GeV100 GeVnone2tracker1504.051628 TeVSUSY (split, rpv, gmsb)5+ charges10+ GeV600+ GeVvarioustracker7tevVSUSY (split, rpv, gmsb)5+ charges10+ GeV600+ GeVvarioustracker	SearchrunsignalDaughtersScaleScaleObjectsDecaysLocationDetectorEXO-12-035-pas8 TeVGMSB neutralino \rightarrow y + Gy + MET100-300 GeVx2 + - 50jets, MET1trackerECAL (timing)EXO-14-017-pas8 TeVGMSB neutralino \rightarrow y + Gy + MET200-300 GeVx2 + - 50MET2trackertrackertracker (conversion of the conversion of the con


Need a morenot yetsystematic approach

more like

Shorter lifetimes: identify DV for < ~ mm displacements

Mass gaps in current searches:

- X→ leptons: 2 20 GeV
- X→ hadrons: < 10 GeV</p>

LHC Community White Paper

Web page: https://indico.cern.ch/event/649760

Searches for long-lived particles at the LHC: Second workshop of the LHC LLP Community

- IT Oct 2017, 16:00 → 20 Oct 2017, 18:00 Europe/Zurich
- Giambiagi Lecture Hall (ICTP, Trieste, Italy)
- Albert De Roeck (CERN), Bobby Samir Acharya (Abdus Salam Int. Cent. Theor. Phys. (IT)), Brian Shuve (SLAC National Accelerator Laboratory), James Beacham (Dhio State University (US)), Xabier Cid Vidal (Universidade de Santiago de Compostela)

Recent workshop: 27-29 May 2019 CERN

White paper — chapter statuses and roundtable [draft <u>here</u> (18 Oct)]

- Simplifed models First draft done!
- Experimental coverage First draft essentially done!

Triggers, upgrades, HL- / HE-LHC opportunities
 — First draft in progress
 —> discussion today [live doc!]

- Re-interpretations / recommendations
 First draft imminent!
- Backgrounds First draft imminent!

Dark showers

 First draft (summarizing status and advertising for the future) imminent!

ICTP 2017

The Abdus Solom International Centre for Theoretical Physic

White Paper being finalized

Input from ATLAS, CMS, LHCb, proposed specialized experiments and theory Completed March 2019 (~ 300 pages)

Also meetings with LHC Dark Matter group

Recent Reviews/Reports

arXiv.org > hep-ex > arXiv:1903.04497

High Energy Physics – Experiment

Searching for long-lived particles beyond the Standard Model at the Large Hadron Collider

White paper of the LHC long-lived particle community Accepted by J.Phys.G

arXiv.org > hep-ex > arXiv:1902.00260

CERN-PBC-REPORT-2018-003

Report of the CERN Physics Beyond Colliders Working group

Summary Report of Physics Beyond Colliders at CERN

R. Alemany¹, C. Burrage², H. Bartosik¹, J. Bernhard¹, J. Boyd¹, M. Brugger¹, M. Calviani¹,
C. Carli¹, N. Charitonidis¹, D. Curtin²³, A. Dainese³⁴, A. de Roeck¹, M. Diehl³, B. Döbrich¹,
L. Evans¹, J.L. Feng²⁴, M. Ferro-Luzzi¹, L. Gatignon¹, S. Gilardoni¹, S. Gninenko¹⁹,
G. Graziani³², E. Gschwendtner¹, B. Goddard¹, A. Hartin¹⁶, I. Irastorza²⁰, J. Jaeckel^{*4},
R. Jacobsson¹, K. Jungmann⁵, K. Kirch⁶, F. Kling²⁴, W. Krasny¹³, M. Lamont^{*1},
G. Lanfranchi⁷, J-P. Lansberg²⁷, A. Lindner³, K. Long¹², A. Magnon¹, G. Mallot¹, F. Martinez
Vidal²¹, M. Moulson⁷, M. Papucci¹, J. M. Pawlowski⁴, I. Pedraza²⁵, K. Petridis¹⁸,
M. Pospelov⁸, S. Pulawski³¹, S. Redaelli¹, S. Rozanov⁹, G. Rumolo¹, G. Ruoso¹⁰, J. Schacher²⁹,
G. Schnell¹¹, P. Schuster²², Y. Semertzidis¹⁴, A. Siemko¹, T. Spadaro⁷, S. Stapnes¹, A. Stocchi²⁸,
H. Ströher¹⁵, G. Usai³⁰, C. Vallée^{*9}, G. Venanzoni²⁶, G. Wilkinson³³, and M. Wing¹⁶

Collider Searches for Long-Lived Particles Beyond the Standard Model

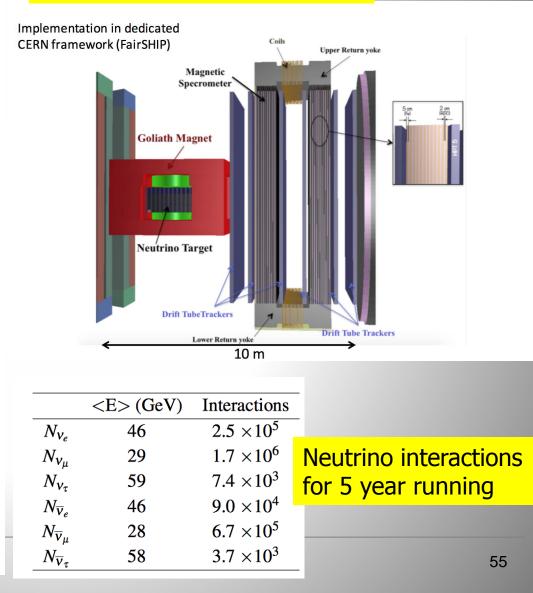
Lawrence Lee¹, Christian Ohm^{2,3}, Abner Soffer⁴, Tien-Tien Yu^{5,6}

arXiv.org > hep-ph > arXiv:1810.12602

Present LHC coverage paper

Summary

- Clearly and increased interest in LLP searches at the LHC in CMS, ATLAS, LHCb, MoEDAL. Many analyses done or are in progress. No signal observed yet, but only the top of the iceberg has been covered so far.
- MoEDAL is a small dedicated experiment for a search for highly ionizing particles, such as monopoles, using unique detection techniques at the LHC.
- New ideas for additional new experiments at the LHC to increase the LHC coverage: MilliQan, MAPP, MATHUSLA, CODEX-b, FASER, AL3X...
- These proposals are at a different stage of progress, approval and funding right now. FASER1 is approved/funded.
- We are still hunting for new physics! It takes only one significant deviation to show the way... and maybe one day soon...


Neutrino Detector & Program

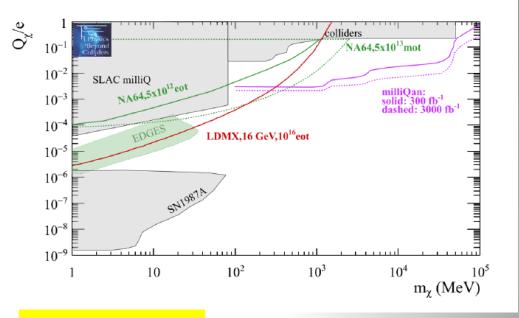
Note: anti- v_{τ} has never been observed

SHiP neutrino program ~8k expected v_{τ} and ~4k anti- v_{τ} interactions in the target

- First observation of anti- v_{τ}
- Sufficient statistics to perform v_{τ} and anti- v_{τ} cross section measurement.
- First measurement of structure function F₄ and F₅ entering in DIS neutrino-nucleon cross section

Follows the OPERA concept

More Milli-Charge Activities


LArTPC study

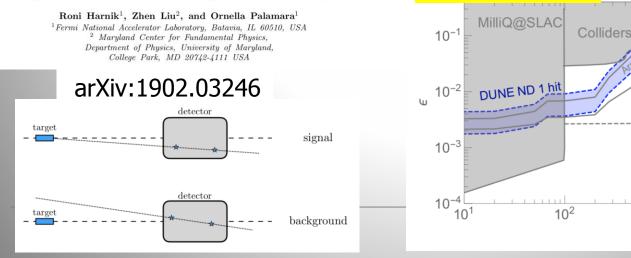
Physics Beyond Collider Study

arXiv:1901.09966

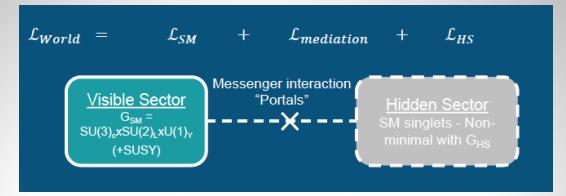
Physics Beyond Colliders at CERN Beyond the Standard Model Working Group Report

J. Beacham¹, C. Burrage^{2,*}, D. Curtin³, A. De Roeck⁴, J. Evans⁶, J. L. Feng⁶, C. Gatto⁷, S. Gninenko⁸, A. Hartin⁹, I. Irastorza¹⁰, J. Jaeckel¹¹, K. Jungmann^{12,*}, K. Kirch^{13,*}, F. Kling⁶, S. Knapen¹⁴, M. Lamont⁴, G. Lanfranchi^{4,18,*,*}, C. Lazzeroni¹⁶, A. Lindner¹⁷, F. Martinez-Vidal¹⁸, M. Moulson¹⁵, N. Neri¹⁹, M. Papucei^{4,20}, I. Pedraza²¹, K. Petridis²², M. Pospelov^{23,*}, A. Rozanov^{24,*}, G. Ruoso^{25,*}, P. Schuster²⁶, Y. Semertzidis²⁷, T. Spadaro¹⁸, C. Vallée²⁴, and G. Wilkinson²⁸.

 10^{3}

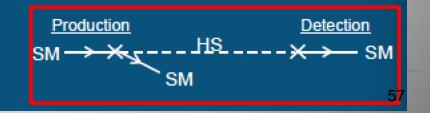

 m_{χ} (MeV)

milliQan


 10^{4}

 10^{5}

Millicharged Particles in Liquid Argon Neutrino Experiments


Physics Goals

New physics prospects in the hidden sector Explore Hidden Portals and extensions of the Standard Model incorporating long lived and very weakly interacting particles

Vector portals: motivated by 'mirror world', constituting dark matter, g-2 anom.
Scalar portals: right handed neutrinos, dark matter, inflation, "dark naturalness"
Neutrino portals: neutrino oscillations, dark matter, baryon asymmetry...
Axion portals: extended Higgs, SUSY breaking, dark matter, inflation...
SUSY portals...

- Two search methods:
 - 1. "Indirect detection" through portals in (missing mass)
 - 2. "Direct detection" through both portals in and out

Details on the Portals

D = 2: Vector portal

- Kinetic mixing with massive dark/secluded/paraphoton V : $\frac{1}{2} \varepsilon F_{\mu\nu}^{SM} F_{HS}^{\mu\nu}$
- →Motivated in part by idea of "mirror world" restoring left and right symmetry, constituting dark matter, g-2 anomaly, …
- Production: proton bremsstrahlung, direct QCD production $q\bar{\bar{q}} \rightarrow V, qg \rightarrow Vq$, meson decays ($\pi^0, \eta, \omega, \eta', ...$)

D = 2: Scalar portal

- Mass mixing with dark singlet scalar $\chi : (gS + \lambda S^2)H^{\dagger}H$
- Mass to Higgs boson and right-handed neutrino, inflaton, dark phase transitions BAU, dark matter, "dark naturalness",
- Production: Direct $p + target \rightarrow X + S$, meson decays e.g. $B \rightarrow KS$, $K \rightarrow \pi S$

<u>D = 5/2: Neutrino portal</u>

- Mixing with right-handed neutrino N (Heavy Neutral Lepton): $Y_{I\ell}H^{\dagger}\overline{N}_{I}L_{\ell}$
- → Neutrino oscillation, baryon asymmetry, dark matter
- Production: Leptonic, semi-leptonic decays of heavy hadrons

D = 4: Axion portal

• Mixing with Axion Like Particles, pseudo-scalars pNGB, axial vectors $a : \frac{a}{F}G_{\mu\nu}\tilde{G}^{\mu\nu}, \frac{\partial_{\mu}a}{F}\bar{\psi}\gamma_{\mu}\gamma_{5}\psi$, etc

Generically light pseudo-scalars arise in spontaneous breaking of approximate symmetries at a high mass scale F

→ Extended Higgs, SUSY breaking, dark matter, possibility of inflaton,...

Production: Primakoff production, mixing with pions and heavy meson decays

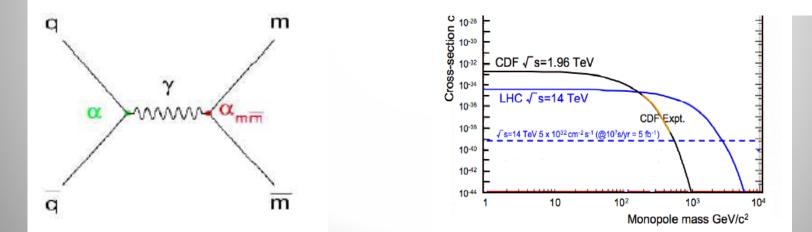
And higher dimensional operator portals

Chern-Simons portal (vector portal)

× H

Monopoles

Magnetic Monopoles to explain the quantization of electric charge (Dirac '31)


$$\nabla \mathbf{.E} = 4\pi \rho_e$$
$$\nabla \mathbf{.B} = 4\pi \rho_m$$
$$-\nabla \times \mathbf{E} = \frac{1}{c} \frac{\partial \mathbf{B}}{\partial t} + \frac{4\pi}{c} \mathbf{j_m}$$
$$\nabla \times \mathbf{B} = \frac{1}{c} \frac{\partial \mathbf{E}}{\partial t} + \frac{4\pi}{c} \mathbf{j_e}$$
$$= q_e \left(\mathbf{E} + \frac{\mathbf{v}}{c} \times \mathbf{B} \right) + q_m \left(\mathbf{B} - \frac{\mathbf{v}}{c} \times \mathbf{E} \right)$$

F

$$eg = n\hbar c/2 = ng_D$$
 = n 68.5e

$$\sigma_{D(m)} = \left(\frac{g_D}{e}\right)^2 \times \sigma_{\mu\mu} (> 2m) \times (1 - 4\frac{m^2}{s})$$

Simplifies Maxwell equations Searched for at all colliders Tevatron direct limits ~ 400-800 GeV

Sensitivity of LHC experiments to exotic highly ionising particles

A. De Roeck¹²³, A. Katre⁴, P. Mermod^{\overline{a} , D. Milstead⁶, T. Sloan⁷}

arXiv: 1112.2999