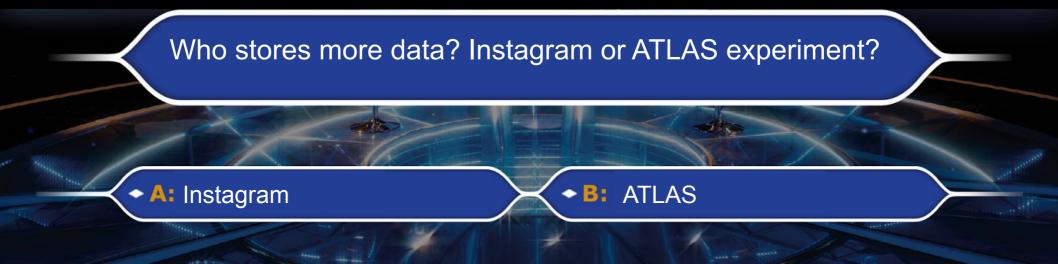


ISO**TDAQ**

International School of Trigger and Data Acquisition

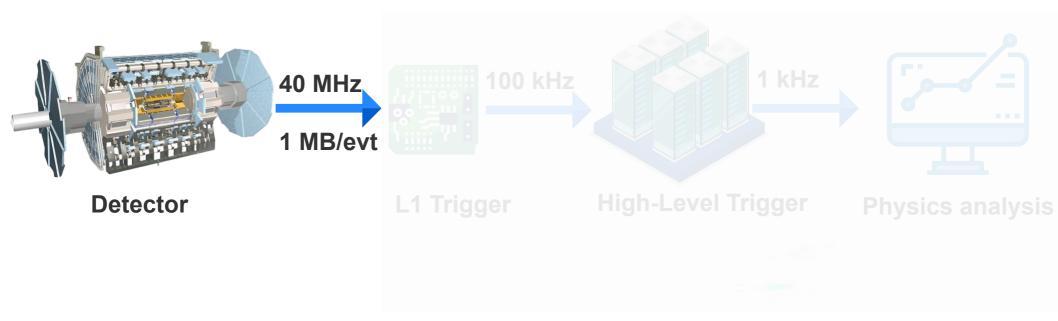

Storage systems for DAQ

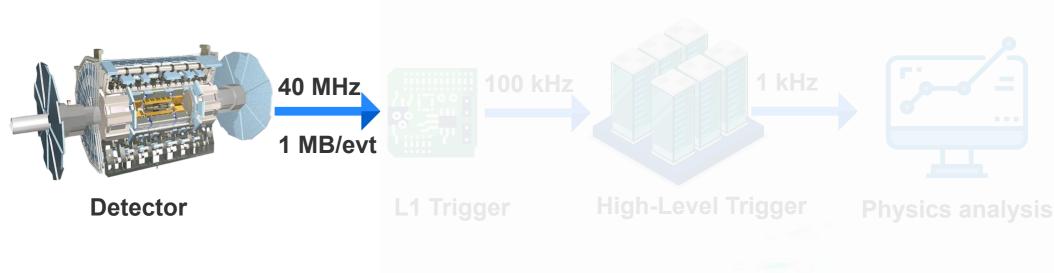
Adam Abed Abud (Univ. of Liverpool / CERN)

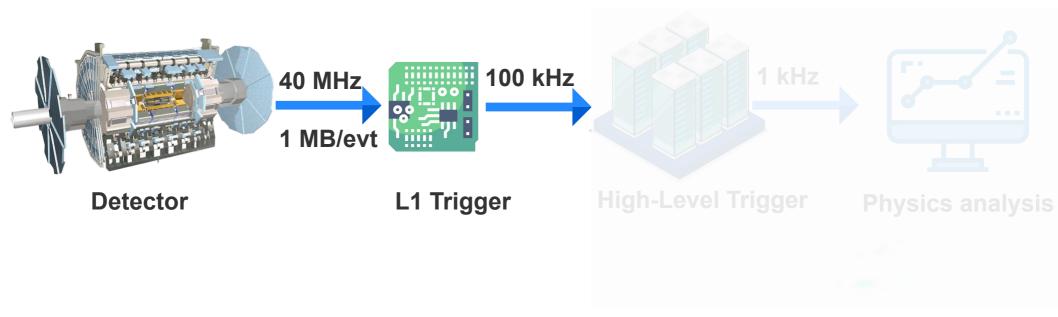
ISOTDAQ 2020

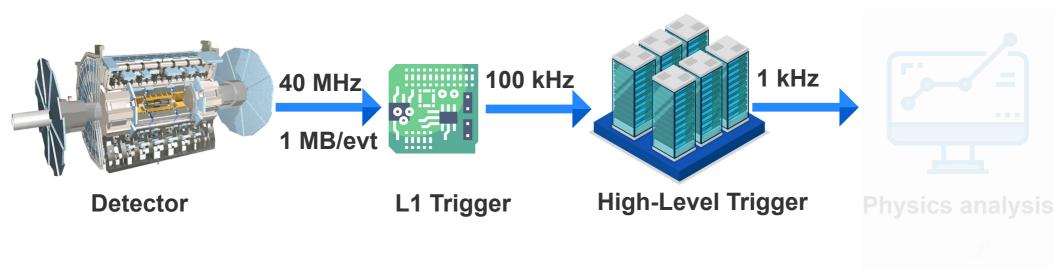
January 18, 2020 (Valencia, Spain)

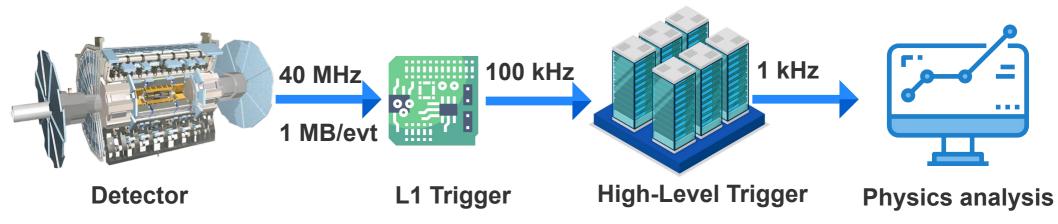




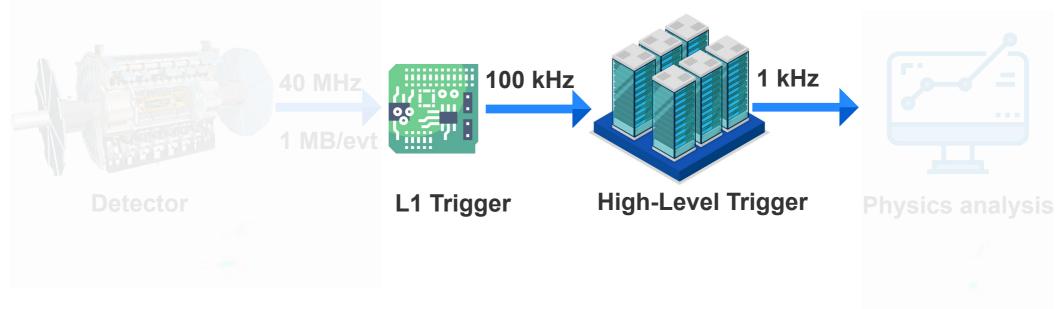



Outline


- Why are storage systems relevant for DAQ?
- Storage concepts
- Technology overview
 - HDD, SSD, NVM and DRAM
- Performance benchmarking
 - DD and FIO
- Storage challenges for the future
- R&D for DUNE: Supernova burst trigger
- Conclusion



- All the data produced cannot be stored:
 - Lack of storage resources
 - Not enough (offline) processing power

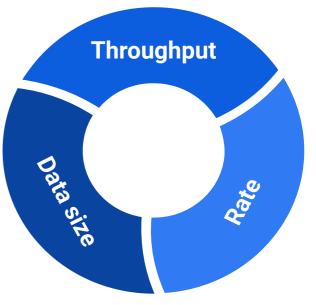


Why are storage systems relevant for DAQ ? TDAQ pipeline and physics analysis

Why are storage systems relevant for DAQ ? TDAQ pipeline - Online data taking ("DAQ")

"Safely store data from point A to point B"

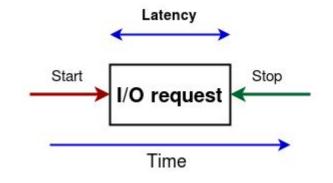
DAQ **MENTORING** Online vs Offline


- Storage system ensures that data is stored and physics results can be produced!
 - \circ Data stored \rightarrow physics results
- DAQ requirements different from offline analysis:
 - Storage used to buffer data:
 Absorbs spikes from the rest of the system
 - Continuous stream of data flow in and out the storage system
 - Throughput and latency constraints
 - Technology choice affected by **total expected data**

DAQ **MENTORING** Online vs Offline

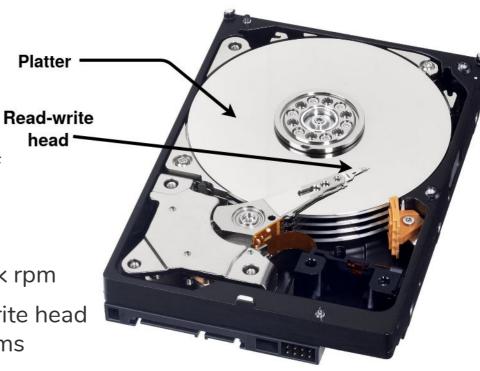
- Storage system ensures that data is stored and physics results can be produced!
 - \circ Data stored \rightarrow physics results
- DAQ requirements different from offline analysis:
 - Storage used to buffer data: Absorbs spikes from the rest of the system
 - Continuous stream of data flow in and out the storage system
 - Throughput and latency constraints
 - Technology choice affected by total expected data

DAQ **MENTORING** Online vs Offline


- Storage system ensures that data is stored and physics results can be produced!
 - \circ Data stored \rightarrow physics results
- DAQ requirements different from offline analysis:
 - Storage used to buffer data:
 Absorbs spikes from the rest of the system
 - Continuous stream of data flow in and out the storage system
 - Throughput and latency constraints
 - Technology choice affected by **total expected data**

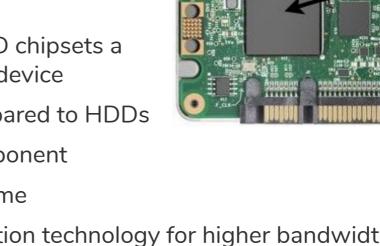
Storage concepts Some definitions

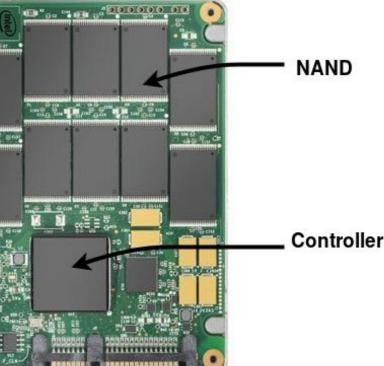
- I/O: input/output operation
- Access pattern: sequential/random read or write
- Latency: time taken to respond to an I/O. Usually measured in ms or in µs
- Rate: number of I/O per second to a storage location (IOPS)
- Blocksize: size in bytes of an I/O request
- Bandwidth: product of I/O block size and IOPS


Bandwidth = $[I/O block size] \times [IOPS]$

Hard drives (HDD) Quick introduction

- Electromechanical device
- Circular rotating platter divided into millions of magnetic components where data is stored
- Typical rotational speed of HDDs:
 - 5400 rpm, 7200 rpm, 10k rpm and 15k rpm
- Seek time: time required to adjust the read-write head on the platter. Typical values: from 3 ms to 15 ms
- Rotational latency: time needed by the platter to rotate and position the data under the read-write head

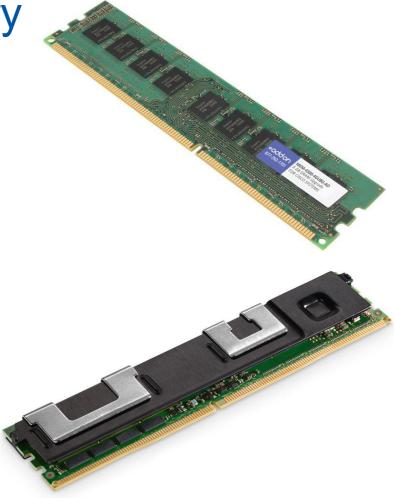

$$IOPS = \frac{1}{\text{Avg. seek} + \text{Avg. latency}}$$



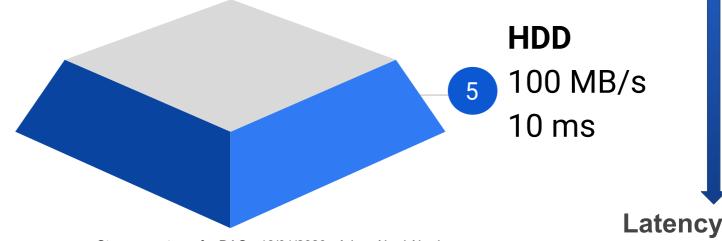
Solid state drives (SSD) Quick introduction

• Architecture:

- NAND flash chipset: store data
- Controller: caching, load balancing and error handling
- Capacity limited to number of NAND chipsets a manufacturer is able to insert into a device
- (Typically) better performance compared to HDDs
 - There is no mechanical component
 - Reduced latency and seek time
- Optimize controller and communication technology for higher bandwidth devices
 - NVM Express (NVMe) SSD

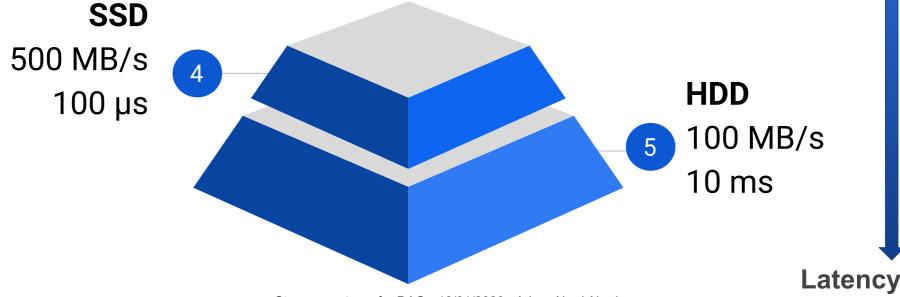


DRAM and Non-Volatile Memory Quick introduction


• DRAM

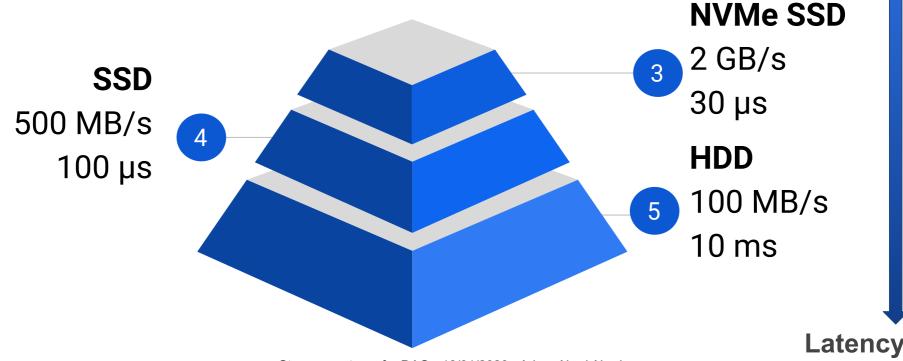
- Semiconductor memory technology
- Data is not persisted, only temporary storage cells (capacitors and transistors)
- \circ Low latency (0.1 μs)
- Non-volatile memory (NVM)
 - Hold data even if device is turned off
 - Higher storage capacity than DRAM
 - \circ Latency (1 µs)

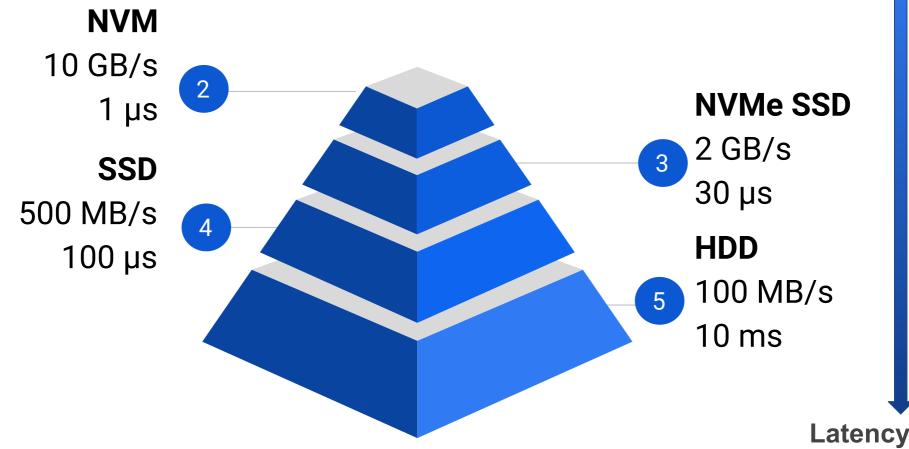
Latency and Bandwidth


Technology overview

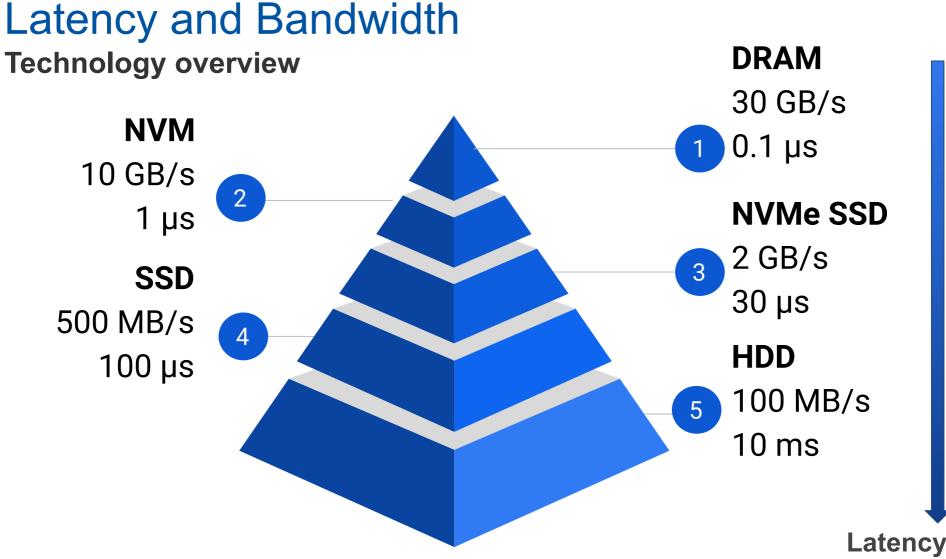
Storage systems for DAQ - 18/01/2020 - Adam Abed Abud

Latency and Bandwidth

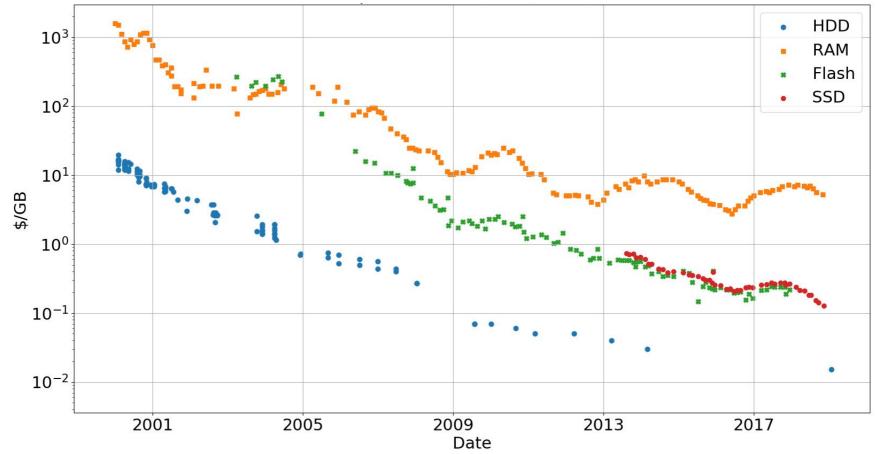

Technology overview


Storage systems for DAQ - 18/01/2020 - Adam Abed Abud

Latency and Bandwidth


Technology overview

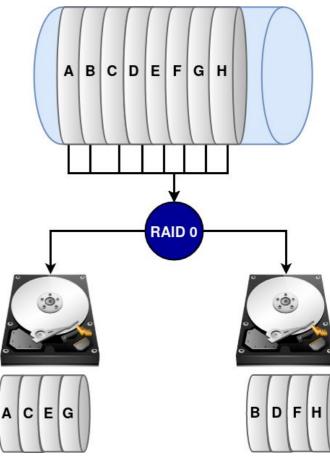
Latency and Bandwidth Technology overview



Storage systems for DAQ - 18/01/2020 - Adam Abed Abud

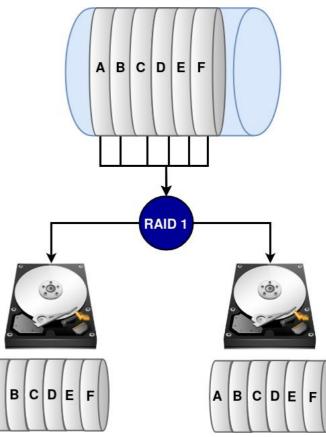
Storage systems for DAQ - 18/01/2020 - Adam Abed Abud

Market trend for storage technologies Price per GB for HDD, SSD, Flash and RAM


Storage systems for DAQ - 18/01/2020 - Adam Abed Abud

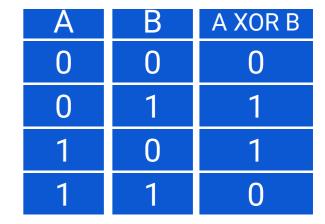
Redundant Array of Inexpensive Disks (RAID) Redundancy and fault tolerance

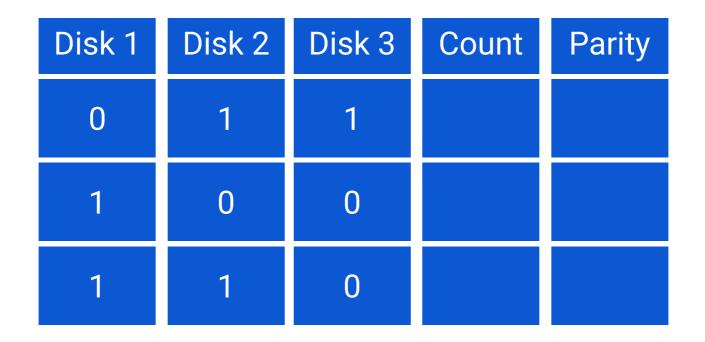
- Multiple physical disk drives are logically grouped into one or more units to increase data performance and/or data redundancy
- Invented in 1987 by researchers from the University of California
- Most common RAID types: RAID 0, RAID 1, RAID 5, RAID 10
- Fault tolerance guaranteed by using parity as an error protection scheme
 - Based on the XOR logic operation
 - For series of XOR operations, count the number of occurrences of 1:
 - If result is <u>even</u> then bit parity is 0
 - If result is <u>odd</u> then bit parity is 1

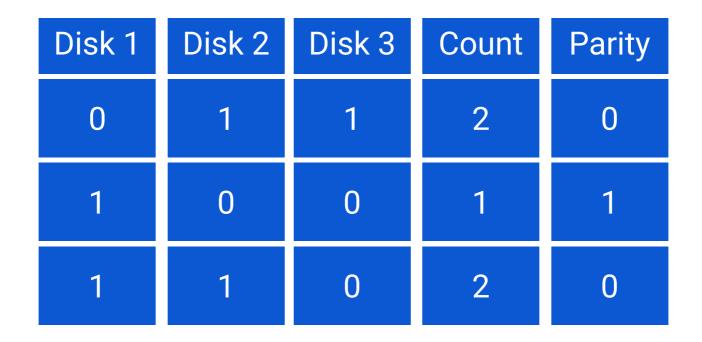

Redundant Array of Inexpensive Disks (RAID) RAID 0 - Striping

- Data divided in blocks and <u>striped</u> across multiple disks
- Not fault tolerant because data is not duplicated
- Speed advantage
 - Two disk controllers allow to access data much faster

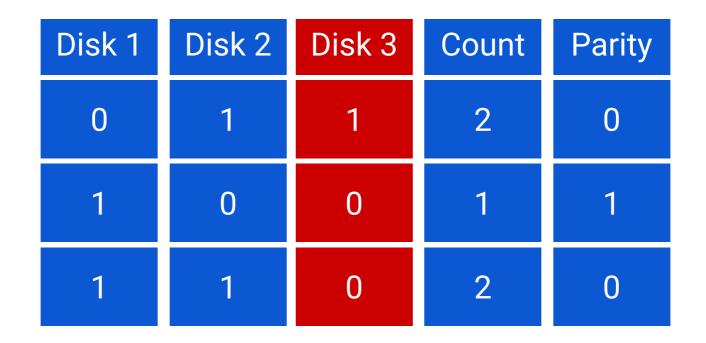
RAID 1 - Mirroring and Duplexing

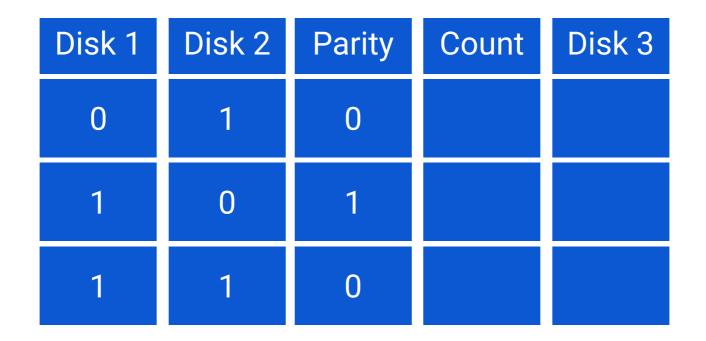

- Data divided in blocks and <u>copied</u> across multiple disks
- Fault tolerant because data mirroring
 - Each disk has the same data
- **Disadvantage**: usable capacity is half of the total

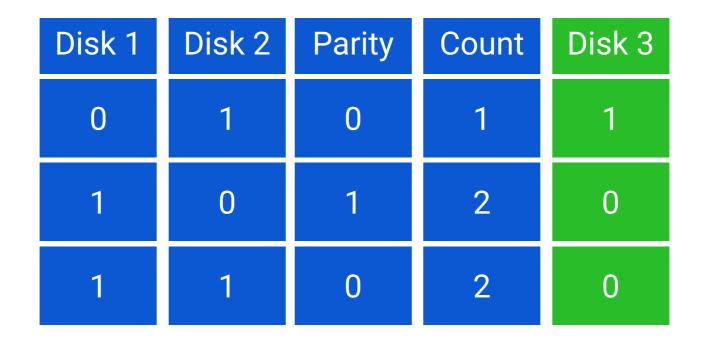


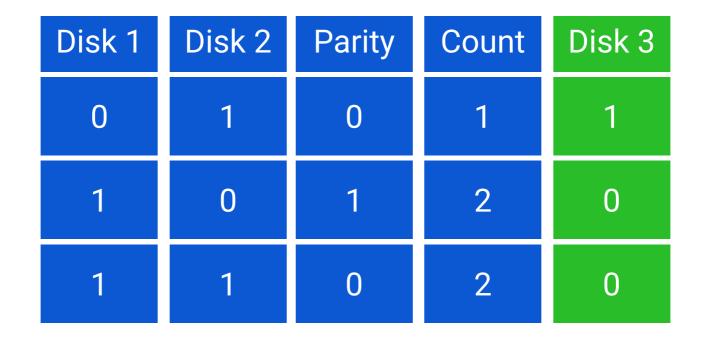

A

Redundant Array of Inexpensive Disks (RAID) Redundancy and fault tolerance

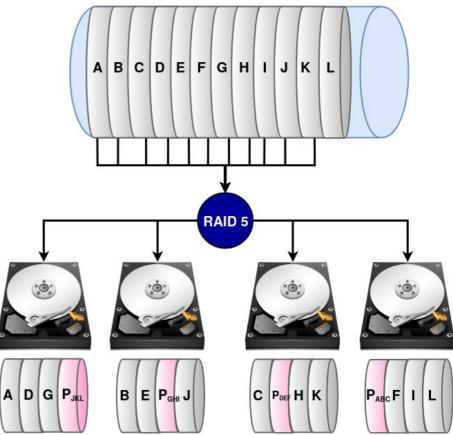

- Multiple physical disk drives are logically grouped into one or more units to increase data performance and/or data redundancy
- Invented in 1987 by researchers from the University of California
- Most common RAID types: RAID 0, RAID 1, RAID 5, RAID 10
- Fault tolerance guaranteed by using parity as an error protection scheme
 - Based on the XOR logic operation
 - For series of XOR operations, count the number of occurrences of 1:
 - If result is <u>even</u> then bit parity is 0
 - If result is <u>odd</u> then bit parity is 1

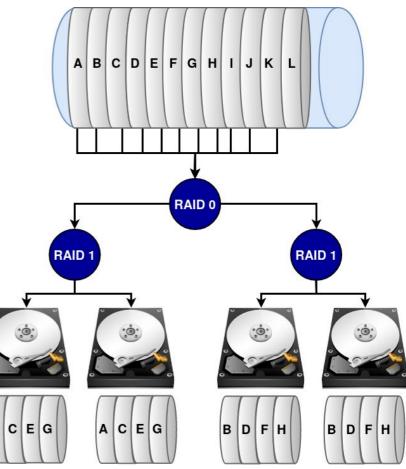






A crash course on bit parity Disk failure




Redundant Array of Inexpensive Disks (RAID) RAID 5 - Striping with parity

- Requires 3 or more disks
- Data is not duplicated but **striped** across multiple disks
- Fault tolerant because **parity** is also striped with the data blocks
- Larger capacity provided compared to RAID 1
- Disadvantage: an entire disk is used to store parity

Redundant Array of Inexpensive Disks (RAID) RAID 10 = RAID 1 + RAID 0

- Requires a minimum of 4 disks
- Data is striped (RAID 0)
- Data is duplicated across multiple disks (RAID 1)
- Advantage: fault tolerance and higher speed
- **Disadvantage**: only half of the available capacity is usable

A

Redundant Array of Inexpensive Disks (RAID) HW, SW

- Hardware implementation:
 - Use of RAID controllers
 - Manage system independently of OS
 - Offload I/O operation and parity computation
 - Cost usually high
- Software implementation:
 - OS used to manage RAID configuration
 - Impact on CPU usage can be high
- Disadvantage: scaling to multiple servers is not possible

Redundant Array of Inexpensive Disks (**RAID**) HW, SW

- Hardware implementation:
 - Use of RAID controllers
 - Manage system independently of OS
 - Offload I/O operation and parity computation
 - Cost usually high
- Software implementation:
 - OS used to manage RAID configuration
 - Impact on CPU usage can be high
- Disadvantage: scaling to multiple servers is not possible

Distributed storage systems

- Distributed storage system: files are shared and distributed between multiple nodes
 - Active community (Red Hat, IBM, Apache)
 - Example: Ceph, Gluster, HadoopFS, Lustre
 - Used by some experiments (CMS)
 - Interesting features: load balancing, data replication, smart placement policies, scaling up to O(1000) nodes
- Application in DAQ: implementation of the event builder:
 - Physical event building (traditional approach): data fragments are fetched explicitly over a network from temporary buffers at the readout nodes to a single physical location
 - **Logical event building**: fragments are stored in a large distributed system and events are built by computing the location of the fragments (metadata operation)
- R&D for future DAQ systems: ATLAS (Phase-II), DUNE, etc.

DAQ **MENTORING** Storage technologies

- Different storage media available on the market for different use cases
 - \circ Long term storage, mostly sequential access \rightarrow HDD
 - \circ $\;$ Low latency and large capacity \rightarrow SSD
 - \circ High rate and persistent \rightarrow Non-Volatile memory
 - \circ Fast and temporary \rightarrow DRAM
- Keep in mind that **price/GB** changes a lot for different storage media
- When designing a DAQ system always keep an eye on the target throughput and required rate for your application
- Data safety and reliability is an important factor!
 - RAID

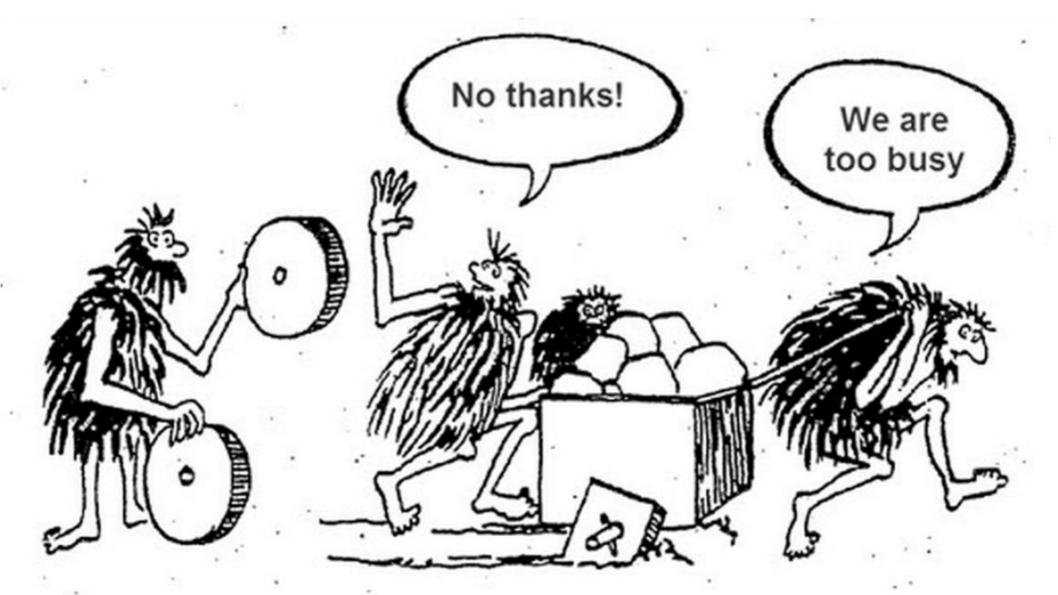
Storage benchmarking

- Linux tool to copy data at the block level
- Usage:
 - **dd if**=/path/to/input/file **of**=/path/to/output/file **bs**=block_size **count**=amount_blocks
- Avoid operating system cache by adding oflag=direct option

```
[student@storage_lecture]$ dd if=/dev/zero of=deleteme bs=1M count=1000
1000+0 records in
1000+0 records out
1048576000 bytes (1.0 GB, 1000 MiB) copied, 3.67626 s, 285 MB/s
```

Storage benchmarking Flexible I/O (FIO)

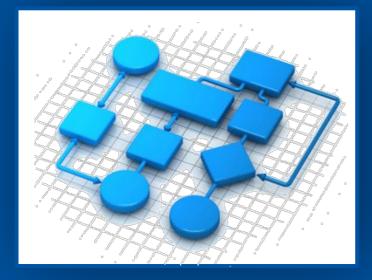
- Advanced tool for characterizing I/O devices
- Usage:
 - fio --rw=<opt1> --bs==<opt2> --size=<opt3> --filename=<opt4>
 --direct=<opt5> --ioengine=libaio --name=isotdaq


```
[student@storage_lecture]$ fio --rw=write --bs=1M --size=1G --filename=deleteme --direct=0 --ioengine=libaio --name=isotdaq
```

```
fio-3.12
Starting 1 process
isotdaq : Laying out IO file (1 file / 1024MiB)
.....
Run status group 0 (all jobs):
    WRITE: bw=276MiB/s (282MB/s), 276MiB/s-276MiB/s (282MB/s-282MB/s), io=1024MiB
(1074MB), run=4424-4424msec
```

DAQ MENTORING

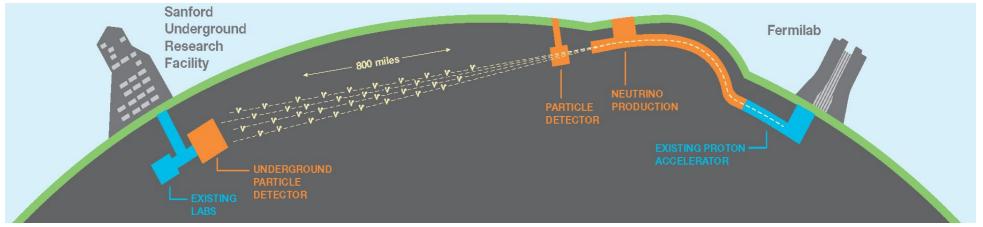
Storage challenges for the next generation DAQ systems


- Physics signals are rare!
 - Higher intensity beams are needed
 - More granular detectors
 - <u>Consequence</u>: store more data
- HL-LHC: Data rates and data bandwidths will increase by ~ 1 order of magnitude
 - <u>Consequence</u>: scale DAQ system
 - Use commercial off-the-shelf technology as much as possible
- Current storage landscape
 - HDD: large and cheap streaming storage
 - SSD: low latency and high throughput

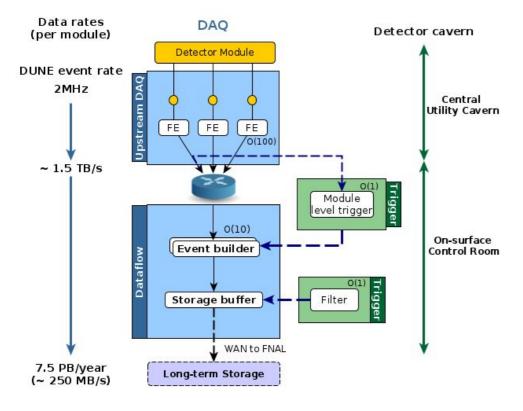
DAQ MENTORING

Storage challenges for the next generation DAQ systems

- Physics signals are rare!
 - Higher intensity beams are needed
 - More granular detectors
 - <u>Consequence</u>: store more data
- HL-LHC: Data rates and data bandwidths will increase by ~ 1 order of magnitude
 - <u>Consequence</u>: scale DAQ system
 - Use commercial off-the-shelf technology as much as possible
- Current storage landscape
 - HDD: large and cheap storage
 - SSD: low latency and high throughput


Storage systems in HEP

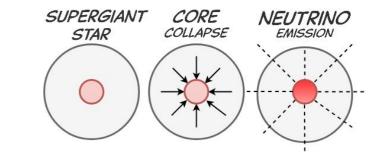
DEEP UNDERGROUND NEUTRINO EXPERIMENT


DUNE experiment Quick recap

Talk on DUNE from Alessandro Thea

- Neutrino experiment located at Sanford Underground Research Facility in South Dakota
- Far detector located 1300 km away from source and approximately 1.48 km underground
- 4 modules of 17 kton LAr time projection chamber

DUNE experiment DAQ system

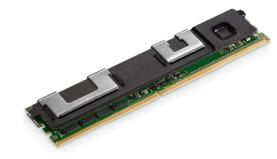

Talk on DUNE from Alessandro Thea

- TPC sampling rate: 2 MHz
- Each readout board :
 10 links
 - O(1) GB/s per link
- 10 GB/s

- 150 detector units
 - Total readout rate O(1.5) TB/s

Supernova Neutrino Burst

- Supernova Neutrino Burst (SNB) detection
 - \circ $\,$ One of the physics goals of DUNE
 - Detection of **rare**, **low energy** and **distributed** signatures
- Data taking of SNB events is **complex**:
 - Long trigger latency
 - Physics event distributed over time
 - Critical data: avoid any potential loss
- Requirements:
 - Transient buffer O(10) seconds (i.e. 15 TB per detector module)
 - On trigger: persist O(100) seconds (i.e. 150 TB per detector module)


Supernova Neutrino buffer Persistent memory

- Critical data and high bandwidth:
 - Use of Non-Volatile Memory technology
- Successful prototype capable of buffering data from the readout system
 - Temporal buffer of 10 seconds
 - \circ Store for over 100 seconds
 - Sustained a maximum throughput of ~ 7 GB/s
- From benchmark results: the bandwidth

of NVM is approximately 10 GB/s

• Consequence: optimize further to exploit the

full potential of the devices (work still in progress!)

00003040	e3	a9	35	8e	66	92	63	e8	39	8d	70	4d	e8	69	8a	93	5.f.c.9.pM.i
00003050	6f	dc	29	d8	94	8f	f7	b1	98	b3	92	3a	24	a3	d9	b3	o.)\$
00003060	91	3c	27	cO	99	53	97	3f	c3	69	c3	39	3a	99	9c	d4	.<'S.?.i.9:
00003070	23	f8	3b	89	c0	bc	c3	b 8	3a	8d	33	ab	29	18	90	92	#.;
00003080	00	00	5f	30	θf	ee	20	46	00	00	00	00	aa	aa	aa	aa	0 F
00003090	42	Θd	c9	39	8d	93	36	bf	59	53	91	3d	27	ec	49	f3	B96.YS.='.I.
000030a0	97	3c	71	e3	79	63	a5	40	9f	a0	f3	09	37	97	94	e6	. <q.yc.@7 < td=""></q.yc.@7 <>
000030b0	e3	78	37	8e	92	fe	73	f8	39	8d	5b	2a	99	69	8d	96	.x7s.9.[*.i
000030c0	e7	bf	88	08	8d	9c	c2	b3	88	03	8f	39	18	al	69	e3	9i.
000030d0	92	38	ff	af	18	b3	98	3e	89	74	f3	a9	37	8e	81	91	.8>.t7
000030e0	d3	f9	39	8d	ab	5c	73	89	37	8e	84	сс	d8	69	8e	91	9\s.7i
000030f0	00	00	38	50	9d	75	20	46	00	00	00	00	aa	aa	aa	aa	8P.u F
00003100	26	f0	49	48	8d	87	45	4e	e9	c3	8b	38	a4	84	88	93	&.IHEN8
00003110	91	39	76	98	99	a3	95	41	cΘ	9a	33	18	3c	8f	db	58	.9vA3. <x < td=""></x <>
00003120	83	08	3b	85	82	5e	43	78	3a	87	da	31	98	e8	8b	85	;^Cx:1
00003130	e4	f7	d8	38	90	8f	b 8	9e	f8	23	8d	3d	54	al	19	63	8#.=Tc
00003140	93	39	40	be	29	d3	99	3f	ca	3c	23	e9	37	8f	78	dc	.9@.)?.<#.7.x.
00003150	c3	48	38	8d	76	a4	f3	48	37	8e	al	7f	38	48	8d	8f	.H8.vH78H
00003160	00	00	11	8e	88	26	20	46	00	00	00	00	aa	aa	aa	aa	& F
00003170	98	6b	f8	29	89	95	1b	fd	79	13	8d	3e	c1	ba	18	b3	.k.)y>
00003180	8f	3f	41	07	39	04	94	42	b3	85	33	89	38	97	8d	9d	.?A.9B3.8
00003190	53	49	38	9e	95	b7	23	39	38	9a	f6	4b	88	d9	89	93	SI8#98K
000031a0	1f	d8	c9	38	94	92	33	b 8	c9	33	93	3a	8d	ad	c9	d3	833.:
00003160	00	30	05	df	70	22	22	41	dı	da	22	5.0	20	of	26	5h	L ~ v ^ 3X · []

Conclusions

- DAQ mentoring:
 - Storage system is crucial for physics results
 - Online data taking has different requirements from offline analysis
- Design of a storage system:
 - Focus on <u>both</u> bandwidth and rate
 - Latency / access pattern
 - Several storage media for different use-cases (HDD, SSD, NVM, DRAM)
- Very important to benchmark performance of devices. Tools: DD and FIO
- Use redundancy where necessary based on system availability requirements

ISO**TDAQ**

International School of Trigger and Data Acquisition

Thank you ! Questions ?

adam.abed.abud@cern.ch