
Design and
Implementation of

a Monitoring
Framework

Serguei Kolos,

University of California, Irvine

Introduction

• For a complex HW&SW system there is no off the
shelf monitoring framework solution
• Such a Framework can be constructed from a number

of tools, which are available on the market

• The aim of the talk is to give conceptual overview
of a Monitoring Framework and explain how
existing tools can be combined to build it:
• Technical details are intentionally omitted
• The SW tools are just named without any detailed

explanation

• The presented solution is general enough to be
used for any system:
• DAQ specifics are explicitly highlighted

14/9/2020 11th International School of Trigger & Data Acquisition 2

How Higgs boson discovery would have
looked like in the ideal world

14/9/2020 11th International School of Trigger & Data Acquisition 3

In real life problems always
happen
• If a problem occurs we need:

• Someone to spot this problem
• A witness to tell us what

happened
• An investigator to analyze this

information and uncover the
root of the issue

• These duties are done by a
Monitoring Framework

14/9/2020
11th International School of Trigger & Data

Acquisition
4

The Simplest Monitoring Example
Ever

When you execute this program “Hello, World”
appears on the screen:

• Informs us that the program fulfills its objective

14/9/2020 11th International School of Trigger & Data Acquisition 5

An event
The monitoring API

function that is used for
reporting events

print(“Hello, World”)

Two Monitoring Framework
Architectures
• Example in the previous slide uses one of the two fundamental approaches to

design a monitoring system:

• It uses Push, White Box or Object Centered approach

• As opposite to the Pull, Black Box or Framework Centered one

14/9/2020 11th International School of Trigger & Data Acquisition 6

• Nagios is a classical example
of the Black Box approach:

• The states of
monitored objects can
be tested by external
checks

• They remain black
boxes otherwise with
respect to the
Monitoring Framework

Black Box approach is not suitable
for DAQ system

• DAQ system has many custom HW and SW components:
• Difficult to extract monitoring information by means of external

probing

• DAQ components operate at high frequencies:
• Polling for monitoring information is inefficient

• Requires immediate reaction to issues:
• Operation time is expensive

14/9/2020 11th International School of Trigger & Data Acquisition 7

Quoting Andrea’s talk
of the last Monday

The White Box approach

• The Framework that will be described in this talk sticks to the
White Box architecture

• The objects of the system been monitored actively advertise their
states to the Monitoring Framework
• SW applications do self-monitoring
• HW objects states are exposed via their SW counterparts (drivers,

controllers, etc.)

• This implies that the Monitoring is built in to every application by
design:
• This looks like a limitation but in fact this is a gift because it enforces

the use of the Monitoring Framework from the very beginning

14/9/2020 11th International School of Trigger & Data Acquisition 8

System
Object

Monitoring
Framework

Publish
Push

Pull

Observer

Theoretical Digression

• Using Monitoring Framework from the start gives a number of
advantages:
• Saves time for the DAQ system development by giving powerful

means for testing and debugging

• The Framework evolves together with the DAQ system taking into
account live feedback:
• Will be ready from the day one

• Monitoring is often considered as
an ad hoc facility:
• This is simply wrong!

• You won’t be able to control your DAQ
system without a good Monitoring
Framework

14/9/2020
11th International School of Trigger & Data

Acquisition
9

“White Box” Monitoring:
Information Types
• Events – anything of importance that happens in

the system

• Logs – auxiliary information that is used for
debugging and testing the system

• Metrics – numbers showing how the system
perform

• Information types are different with respect to how
they are produced and being handled

14/9/2020 11th International School of Trigger & Data Acquisition 10

Handling Events* and
Logs

* Event in the Monitoring domain means an incident.
Physics Event will be used instead when talking about

data from a physics detector.

Get back to our example

print(“Hello, World”)

• A print-like function can be used for reporting events

• But it has a number of flaws:
• It provides both the API and the implementation – no

customization is possible
• It does not support event levels
• It does not add time stamp and other useful attributes to an

event

• Do better solutions exist?

14/9/2020 11th International School of Trigger & Data Acquisition 12

2017-02-02 16:21:13,583 INFO [hello.py:4 - <module>()] Hello, World

Logging API to the rescue

import logging

logging.info(“Hello, World”)

14/9/2020 11th International School of Trigger & Data Acquisition 13

Use the standard well-designed
API

Extra properties are added
automaticallyEvents destination can be changed without

touching the application code

The output format can be
easily changed

logging.basicConfig(format='%(asctime)s

%(levelname)s [%(filename)s:%(lineno)s -

%(funcName)s()] %(message)s', level=logging.INFO)

Logging APIs

Python
import logging

critical(msg, *args, **kwargs)

debug(msg, *args, **kwargs)

error(msg, *args, **kwargs)

info(msg, *args, **kwargs)

warning(msg, *args, **kwargs)

Java
import java.util.logging.Logger

severe(String msg);

fine(String msg);

error(String msg);

info(String msg);

warning(String msg);

14/9/2020
11th International School of Trigger & Data

Acquisition
14

• Events destination is fully customizable by configuring a set
of so called Appenders

Java Logger: Existing Appenders

• CassandraAppender - writes its output to an Apache
Cassandra database

• FileAppender – writes events to an arbitrary file.

• FlumeAppender - Apache Flume is a distributed, reliable and
highly available system for efficiently collecting, aggregating, and
moving large amounts of log data

• JDBCAppender - writes log events to a relational database table
using standard JDBC

• NoSQLAppender - writes log events to a NoSQL database

• SMTPAppender - sends an e-mail when a specific logging event
occurs, typically on errors or fatal errors

• ZeroMQAppender - uses the JeroMQ library to send log
events to one or more ZeroMQ endpoints

14/9/2020 11th International School of Trigger & Data Acquisition 15

https://cassandra.apache.org/
http://flume.apache.org/index.html
https://github.com/zeromq/jeromq

The Flow of Monitoring Events

• All components shown in this diagram can be found on the market:
• No custom programming is needed

• Message Queuing can be part of the Event Analytics engine

• Event Storage is optional but very convenient:
• Provides Events archive that can be used for post mortem analysis
• Distributed storage can be used in place of an Message Queuing

14/9/2020 11th International School of Trigger & Data Acquisition 16

Message
Queuing

PushDAQ
Application

Lo
gg

in
g

A
P

I

Event Storage

Event
Analytics

Push

Push
1

2

3

The Final Destination

• Any Event Analytics engine allows to specify how to
react to a combination of events:
• It’s just a matter of a configuration

14/9/2020 11th International School of Trigger & Data Acquisition 17

Event Analytics
Engine

SMS

E-Mail

Alarms

Control Commands

DAQ
System

Human
Operator

Control
Commands

Events Analytics Tools: The
Market Overview
• There are a few Event Analytics tools available on the

market

• They can be split into two main groups:
• Standalone Tools:

• Splunk – standalone log monitor with real-time alerts and events
visualization:
• Needs an external Message Queuing software

• Used in ATLAS for events display in Web Browsers

• Esper – complex event analysys tool implemented in Java.

• Distributed tools:
• Apache Kafka – a distributed real-time publish-subscribe messaging

system

• Apache Heron - a distributed stream processing engine developed
at Twitter

14/9/2020 11th International School of Trigger & Data Acquisition 18

ATLAS Web Based Events browser
implemented with Splunk

14/9/2020 11th International School of Trigger & Data Acquisition 19

Event Properties

• An Event shall contain:
• Importance Level (or Severity)

• A human readable (and understandable)
explanation of the corresponding incident:
• A shifter calling you in the middle of a night can just

read it

• A source ID that identifies the origin of the
incident (Application or a HW module ID)

• The time stamp of the incident

14/9/2020 11th International School of Trigger & Data Acquisition 20

Event Importance Levels

• CRITICAL
• A fatal failure has occurred. This indicates that the component can

not do its work any more without external intervention

• ERROR
• A recoverable error has happened

• WARNING
• Nothing is bad so far but the system is close to a certain limit
• Do not neglect warnings as they tend to become errors

• INFO
• An expected incident has occurred

• DEBUG
• Detailed information used for testing and debugging
• This level corresponds to what we call Logs

14/9/2020 11th International School of Trigger & Data Acquisition 21

Event Source ID Schema

• It’s important to know who reported a specific
event

• A common naming schema has to be developed in
advance and used by the Logging API
implementation:
• Allows easy grouping and filtering of events

• Is very helpful for scaling up the Monitoring Framework
implementation

• It may look like:
• Location.Application.Environment

14/9/2020 11th International School of Trigger & Data Acquisition 22

Time Stamps

• Time Stamp is a vital property of an Event and of any
monitoring information in general:
• Used for correlating events from different sources
• Used for correlating monitoring events with real-life incidents

• The time stamp guidelines:

• Use NTP service on all computers
• Use the best possible precision (nanoseconds) when generating time

stamps
• Use UTC time when reporting
• Conversion to the human readable local time shall be done by a

event displaying applications with respect to its location

14/9/2020 11th International School of Trigger & Data Acquisition 23

Finally, what to do with Logs?

• Logs are a sub-type of Events:
• Provides additional information for debugging
• Normally is used by human experts only:

• Not suitable for automated analysis by an event analytics
engine

• Amount of Logs usually exceeds the total amount of all
other types of Events

• The best destination for logs would probably be a
file system:
• Foresee enough space on the local disks
• Old logs can be archived or removed after some

configurable time

14/9/2020 11th International School of Trigger & Data Acquisition 24

System Metrics

• Metrics are measures of properties in the software
or hardware system components:
• Have to be watched over time

• Crucial information for the monitoring

• Metrics should be kept as close as possible to the
properties being measured:
• In the White Box architecture Metrics are produced by

the SW Applications being monitored

Metric Types

• Gauge:
• A snapshot of a specific measurements

• CPU, memory, disk usage; voltages, currents, pressure,
etc.

• Timer:
• Time interval that is taken by a certain operation
• A kind of Gauge measured by a chronometer

• Counter:
• Monotonically increasing integer number

• Number of triggers, number of bytes sent/received, etc.

14/9/2020 11th International School of Trigger & Data Acquisition 26

Metrics Naming

• Each Metric shall have a unique IDs reflecting its origin
and the nature:
• Event Naming Schema + Metric Name

• Location.Application.Environment.Metric

• ATLAS.Dataflow.RecordedEvents.Counter

• Obeying to a common naming schema can greatly
simplify metrics handling:
• Easy selection and filtering using regular expressions

• Common operations like for example aggregation can be
split into multiple stages for scalability

14/9/2020 11th International School of Trigger & Data Acquisition 27

Derivative Metrics

• Basic metrics are not very useful for
the Monitoring

• Mathematical transformations are
applied to the original values to
produce more useful numbers:
• Time based:

• Average, Min/Max and Median for
Gauges and Timers

• Rates for Counters

• Frequency distribution:
• Histograms for Gauges and Timers

14/9/2020
11th International School of Trigger & Data

Acquisition
28

Derivative Metrics Can be
Produced By…
• Metric Providers:

• Define and publish extra Metrics
• Example:

• Original Metric: ATLAS.Dataflow.RecordedEvents.Counter
• Derivative Metric: ATLAS.DataFlow.RecordedEvents.Rate

• Metrics Visualization Engine:
• Reads time series for the Counter Metric
• Calculates and display the Rate Metric on the fly
• Pro:

• Reduces the amount of data being stored and passed around

• Reduces Metrics production overhead

• Cons:
• Places more load on the visualization software

14/9/2020 11th International School of Trigger & Data Acquisition 29

An API for Metric Providers?

• Unlike the Logging API for Events&Logs there is no
commonly accepted API for Metrics:
• SW tools for metrics collection and analysis use their proprietary

APIs

• This may not be a problem for a small short-living project:
• Directly using a specific SW API is a viable option

• Be careful to choose a SW with the live-time going beyond your
project time-scale

• HEP experiments have a life-time of ~30 years:
• It’s difficult to find a SW system that is likely to survive that long

14/9/2020 11th International School of Trigger & Data Acquisition 30

A Simple API for Metric Providers

package Monitoring;

interface Gauge {

void setValue(double v);

}

interface Counter {

void increment();

}

interface Metric {

Gauge createGauge(String name);

Counter createCounter(String name);

}

14/9/2020 11th International School of Trigger & Data Acquisition 31

Metrics Providers API implementation can
give some extra benefits

• Isolates dependency on the underlying SW tools:
• Switching from one SW to the other is transparent for the

system applications

• Enforces the Naming Scheme:
• The Application just provides a local Metric name, the prefix

is added automatically

• Ensures uniqueness of the Metrics IDs

• Calculates derivative Metrics automatically with
respect to a given configuration:
• Applications don’t need to warry about that

• Keeps “Observation Effect” under control

14/9/2020 11th International School of Trigger & Data Acquisition 32

“Observation Effect”

• An observation has an overhead:
• It consumes some resources (CPU, memory, network

bandwidth)

• It may have an influence on the monitoring data
providing application:
• Depends on the monitoring framework architecture

• To minimize this overhead any communication with
external tools should be done asynchronously

14/9/2020 11th International School of Trigger & Data Acquisition 33

The Monitoring Framework Architecture

• The underlying architecture is transparent for DAQ
applications:
• Central Storage implementation can be changed to a

Distributed Access one and vice versa
• Using both of them at the same time may also be a feasible

option

14/9/2020 11th International School of Trigger & Data Acquisition 34

Message
Queuing

PushDAQ
Application

M
o

n
it

o
ri

n
g

A
P

I

Metric Storage

Metric
Analytics and
Visualization

Push

Push

1

2

3

The Market Overview
What tools can be used to implement a Monitoring

Framework

14/9/2020
11th International School of Trigger & Data

Acquisition
35

Metrics Checking Tools

• The same tools as for Events processing may be
used:
• Riemann - aggregates events from servers and applications with a

powerful stream processing language

• Esper - complex events processing streaming analytics

• Used in ATLAS for Shifter Assistant and Expert Systems
implementation

• This allows to define advanced rules based on both
Events and Metric

• Reduces time for development and simplify
maintenance of the Monitoring Framework

14/9/2020 11th International School of Trigger & Data Acquisition 36

Storage Implementations

• Traditional relational databases may work well for a
small-scale project

• For a large DAQ system one should consider NoSQL
distributed alternatives:
• Whisper – a lightweight, flat-file database format for

storing time-series data
• InfluxDB – a time-series database that’s written in Go
• Cassandra – scalable, high availability storage platform
• MongoDB - a general purpose, document-based,

distributed database

14/9/2020 11th International School of Trigger & Data Acquisition 37

Metric Visualization Tools

• There are many Open Source tools:
• Grafana - the open observability platform

• D3 - a Javascript library for data visualization

• Rickshaw – a Javascript library for data visualization

• Facette – a multi-data source dashboard written in Go

• There are a few others as well…

• In general It is a good idea to choose a tool that
supports RESTful interface for data access

14/9/2020 11th International School of Trigger & Data Acquisition 38

RESTful Protocol

• REST – Representational State Transfer

• Client-server HTTP-based stateless communication
protocol

• Supported by most of the modern information storage
as well as Web-based Visualisation systems:
• Supports seamless interoperations

• Makes it easy to switch from one Storage or
Visualisation platform to another

REST Protocol Example

• Request:
https://atlasop.cern.ch/monitoring/

? id=ATLAS.Dataflow.RecordedEvents.Rate

& from=now-30d

& to=now

• Response:
Json Time Series, e.g.:
[

{t:1579104640,v:12345},

{t:1579104645,v:12354},

{t:1579104650,v:12354},

{t:1579104655,v:12352}

]

Web-based ATLAS Online Monitoring Customizable
Dashboard implemented using Grafana

14/9/2020 11th International School of Trigger & Data Acquisition 41

Scaling up the
Monitoring
Framework

14/9/2020
11th International School of Trigger & Data

Acquisition
42

The HEP Experimental Realm

• A DAQ system of a modern HEP
experiment includes:
• O(1K) computers and network devices
• O(10K) SW applications
• O(100K) HW sensors

14/9/2020 11th International School of Trigger & Data Acquisition 43

• When choosing SW technologies for the Monitoring
Framework one has to consider:
• Number of monitoring data providers
• Number of metrics and their update rates
• The total amount of monitoring data produced for the life-time

of the experiment

• There are two approaches for scaling:
• Horizontal and Vertical

Vertical Scaling

• Vertical Scaling is achieved by
increasing the power of
individual computers

• Vertical scalability heavily
depends on the tools used for
monitoring data processing:
• Some tools may scale better

than the others
• Should be taken into account

when choosing the right tools
for your project

14/9/2020
11th International School of Trigger & Data

Acquisition
44

Horizontal Scaling Works Better!

• Horizontal scaling works by adding more computers to the
system

• Horizontal scaling naturally maps to the Naming Schemas of
Events Sources and Metrics Names:
• Extra server(s) can be at different levels of the Naming Schema to

handle a respective sub-set of Events and Metrics

Location

Application

Environment

14/9/2020
11th International School of Trigger & Data

Acquisition
45

DAQ Special:
Data Quality Monitoring

How to Monitor the Detector?

• Detectors of LHC experiments are
incredibly complex devices:
• Up to 108 output data channels
• Mostly custom electronics
• 40 MHz operational frequency

• Traditional monitoring would
yield in O(1) PHz (petahertz) of
metrics update rate:
• These metrics are not even

attempted to be produced
explicitly

• However DAQ system has a
handle on these metrics…

14/9/2020
11th International School of Trigger & Data

Acquisition
47

Detector Metrics

• Each Physics Event taken
from the detector by the
DAQ system contains
metrics for a sub-set of
detector channels:
• An expert can spot

problems by looking into
a graphical event
representation

• This is of course very
difficult and unreliable

14/9/2020 11th International School of Trigger & Data Acquisition 48

Automated Data Quality
Analysis
• Dedicated DAQ applications apply

standard physics analysis algorithms to a
statistical sub-set of the Physics Events:
• Extract Detector Metrics and build their

statistical distributions(histograms)

• Analyze histograms and produce a new set
of Metrics – Data Quality statuses

14/9/2020 11th International School of Trigger & Data Acquisition 49

Physics Event
Analysis

Algorithms

Samples
of Physics
Events

Statistical
Distribution

Statistical
Analysis

Algorithms

Wrap-up

14/9/2020
11th International School of Trigger & Data

Acquisition
50

Key Points to Keep in Mind when
designing A Monitoring Framework

• Use standard Monitoring APIs if possible:
• e.g. Logging API

• Think carefully when designing a custom API:
• It should not depend on a particular technology

• Use off the shelf solutions for the Monitoring Framework
components, e.g. Analytics and Visualization:
• A custom made implementation should be well justified

• It is acceptable that only Monitoring APIs are available at the very
beginning:
• Monitoring Framework implementation will evolve in the course of

DAQ system development for the mutual benefit

14/9/2020 11th International School of Trigger & Data Acquisition 51

