- EXCELENCIA ( ,{:D
GOBIERNO  MINISTERIO Cmmoﬁ 9 MARIA r\ C

DE ESPANA DE ClENClA. |NNOVAC|ON Centro de |nvestjgac[ones DE MAE ZTU .
CIEMAT
Y UNIVERSIDADES Energéticas, Medioambientales )

y Tecnologicas fisica de particulas

Design and
Implementation of
a Monitoring
Framework

3 ISOTDAQ Serguei Kolos,

International School of Trigger . . . . .
and Data Acquisition University of California, Irvine




Introduction

* For a complex HW&SW system there is no off the
shelf monitoring framework solution

* Such a Framework can be constructed from a number
of tools, which are available on the market

* The aim of the talk is to give conceptual overview
of a Monitoring Framework and explain how
existing tools can be combined to build it:

* Technical details are intentionally omitted
* The SW tools are just named without any detailed
explanation

* The presented solution is general enough to be
used for any system:

* DAQ specifics are explicitly highlighted

14/9/2020 11th International School of Trigger & Data Acquisition 2



How Higgs boson discovery would have
looked like in the ideal world

Wait for it... w

14/9/2020 11th International School of Trigger & Data Acquisition




n real life problems always
nappen

* If a problem occurs we need:
* Someone to spot this problem gj :Lﬂ

* A witness to tell us what .. % 3
happened 3‘1 V
» An investigator to analyze this ~ —Foa==—0( 2
information and uncover the wa' %/,
root of the issue V| 713
* These duties are done by a W oy
Monitoring Framework i \ O3
"I swear to tell the truth, the whole truth, and
nothing but the truth, from my perspective."
14/9/2020 11th International School of Trigger & Data .

Acquisition



The Simplest Monitoring Example
Ever

The monitoring API
function that is used for An event
reporting events

print(“Hello, World”)

When you execute this program “Hello, World”
appears on the screen:

* Informs us that the program fulfills its objective

14/9/2020 11th International School of Trigger & Data Acquisition



Two Monitoring Framework
Architectures

* Example in the previous slide uses one of the two fundamental approaches to
design a monitoring system:

* It uses Push, White Box or Object Centered approach
* As opposite to the Pull, Black Box or Framework Centered one

. : 4
e Nagios is a classical example

of the Black Box approach: EH TePLP
* The states of g Nagios //,,E

Database server ChECkS

monitored objects can = Plugins —
be tested by external —Gl—-"'/ ." Performance Data \ 3
MS-’F’ager

checks

Switch/Router
* They remain black —
boxes otherwise with Eﬂ'ﬂq} I =
respect to the EE. ek E R _j*anfém;r
Monitoring Framework =" = Disp

Mail

Display Tool

14/9/2020 11th International School of Trigger & Data Acquisition 6



Black Box approach is not suitable
for DAQ system

» Data AcQuisition is an
heterogeneous field

- Boundaries not well defined &8
Quoting Andrea’s talk ~ An alchemy of physics, «

electronics, networking,
of the last Monday computer science, ... :

- Hacking and experience
- ..., money and manpower
matter as well

* DAQ system has many custom HW and SW components:

 Difficult to extract monitoring information by means of external
probing

 DAQ components operate at high frequencies:
* Polling for monitoring information is inefficient

* Requires immediate reaction to issues:
* Operation time is expensive

14/9/2020 11th International School of Trigger & Data Acquisition



The White Box approach

* The Framework that will be described in this talk sticks to the
White Box architecture

* The objects of the system been monitored actively advertise their
states to the Monitoring Framework

* SW applications do self-monitoring
 HW obﬂ'ects states are exposed via their SW counterparts (drivers,
controllers, etc.)

. '(Ij'his_ implies that the Monitoring is built in to every application by
esign:

* This looks like a limitation but in fact this is a gift because it enforces
the use of the Monitoring Framework from the very beginning

— SR
System m Monitoring Observer
Object Framework

____ —_

14/9/2020 11th International School of Trigger & Data Acquisition 8



Theoretical Digression

* Using Monitoring Framework from the start gives a number of
advantages:

» Saves time for the DAQ system development by giving powerful
means for testing and debugging

* The Framework evolves together with the DAQ system taking into
account live feedback:

* Will be ready from the day one

* Monitoring is often considered as
an ad hoc facility:
* This is simply wrong!

* You won’t be able to control your DAQ

system without a good Monitoring VAT~ =2
Framework It looks like you have everything under control:

14/9/2020 th Internationa Sc. oolo rigger & Data ;
Acquisition



“White Box” Monitoring:
Information Types

* Events — anything of importance that happens in
the system

* Logs — auxiliary information that is used for
debugging and testing the system

* Metrics — numbers showing how the system
perform

* Information types are different with respect to how
they are produced and being handled



Handling Events™® and
Logs

* Event in the Monitoring domain means an incident.
Physics Event will be used instead when talking about
data from a physics detector.




Get back to our example

print(“Hello, World”)

* A print-like function can be used for reporting events

e But it has a number of flaws:

* It provides both the APl and the implementation — no
customization is possible

* |t does not support event levels

* |t does not add time stamp and other useful attributes to an
event

Do better solutions exist?



Logging APl to the rescue

. . PN Use the standard well-designed
import logging

API

logging.basicConfig(format='% (asctime)s
(levelname)s [$(filename)s:%(lineno)s -
(funcName)s ()] % (message)s', level=logging.INFO)

3
3

logging.info (“Hello, World”) The output format can be
easily changed

2017-02-02 16:21:13,583 INFO [hello.py:4 - <module>()] Hello, World

Extra properties are added

Events destination can be changed without U isiicbical;

touching the application code

14/9/2020 11th International School of Trigger & Data Acquisition 13



Logging APIs

Python Java

import logging import java.util.logging.Logger
critical (msg, *args, **kwargs) severe (String msqg) ;

debug (msg, *args, **kwargs) fine (String msqg) ;

error (msg, *args, **kwargs) error (String msqg) ;

info (msg, *args, **kwargs) info (String msgqg) ;

warning (msg, *args, **kwargs) warning (String msqg) ;

* Events destination is fully customizable by configuring a set
of so called Appenders



Java Logger: Existing Appenders

» CassandraAppender - writes its output to an Apache
Cassandra database

* FileAppender — writes events to an arbitrary file.

* FlumeAppender - Apache Flume is a distributed, reliable and
highly available system for efficiently collecting, aggregating, and
moving large amounts of log data

* JDBCAppender - writes log events to a relational database table
using standard JDBC

* NoSQLAppender - writes log events to a NoSQL database

« SMTPAppender - sends an e-mail when a specific logging event
occurs, typically on errors or fatal errors

 ZeroMQAppender - uses the JeroMQ library to send log
events to one or more ZeroMQ endpoints



https://cassandra.apache.org/
http://flume.apache.org/index.html
https://github.com/zeromq/jeromq

The Flow of Monitoring Events

1
/ _\ Push > / \
a | - i .
< 2 I\\ [ M : N
PR N @ssage | ;-
bAQ 1 2 [ push 8% 1T Push EvtEli
Application 5 o Queuing : !, Analytics
| 3 e B / .
| //*\\\ : : ”,’ \\
7 p\*\\ A _ S ? _ 3 ,,”’\\ o
\‘\L\/S " __:\ il____ Il\, ?\)”’,
\ / \!), ”\\,:’—— w - AL/ ”," \ /

- I

m

<
D
)]
—+
Y2
—+
@)
=]
Q)

(0]¢]
)

—— -

* All components shown in this dlagram can be found on the market:
* No custom programming is needed

* Message Queuing can be part of the Event Analytics engine

e Event Storage is optional but very convenient:
* Provides Events archive that can be used for post mortem analysis
* Distributed storage can be used in place of an Message Queuing

14/9/2020 11th International School of Trigger & Data Acquisition 16



The Final Destination

/

o

~

Event Analytics

Engine

/

SMS >
E-Mail >
Alarms >

-~

-

Human
Operator

~

Control
Commands

J

Control Commands

)

DAQ
System

* Any Event Analytics engine allows to specify how to
react to a combination of events:

* |t’s just a matter of a configuration

14/9/2020

11th International School of Trigger & Data Acquisition

17



Events Analytics Tools: The
Market Overview

* There are a few Event Analytics tools available on the
market

* They can be split into two main groups:

e Standalone Tools:

* Splunk — standalone log monitor with real-time alerts and events
visualization:

* Needs an external Message Queuing software
e Used in ATLAS for events display in Web Browsers
e Esper —complex event analysys tool implemented in Java.

e Distributed tools:

* Apache Kafka — a distributed real-time publish-subscribe messaging
system

* Apache Heron - a distributed stream processing engine developed
at Twitter



ATLAS Web Based Events browser
implemented with Splunk

ERS Web Browser (2016-2017)

please use ers/browser credentials when session expires and SPLUNK login appears, or reload the page

Simple search \
ATLAS errors \
Partition
from Sep 10 th... ATLAS
A
#msgs:ApplD host
584
* *
time sev msglD
171716 WARNING ROS::ROSRobinMPExceptions
Oct 11
2016
1717:16 - WARNING ROS::ROSRobinNPExceptions
oct 11
2016
171716 WARNING ROS::ROSRobinMPExceptions
oct 11
2016
171716 WARNING  Resourcesinfo::ConfigError
oct 11
2016

14/9/2020

Advanced search \ ERS statistics
CHIP events
Run Number MessagelD Msg Text filter
v 310405([23:590ct .. | » * *
Severity ERS fields:
'INFO v
application text

ROS-MDT-BC- Fragment error: RobinNP:processincomingFragment: ROL 4 Fragment out of
01 sequence: L1 ID = 0xff000001, Most Recent ID ...

ROS-MDT-ECA-  Fragment error: RobinNP::;processincomingFragment: ROL 1 Fragment out of
02 sequence: L1 ID = 0xff000001, Most Recent ID ...

ROS-MDT-ECC- Fragment error: RobinNP::processincomingFragment: ROL 1 Fragment out of
02 sequence: L1 ID = 0xff000001, Most Recent ID ...

ResInfoProvider Configuration problem: ignore 2 component(s) not referenced by partition, but
including partition segments and/or res...

eprev. 21 22 23 24 25 26 27 28 29

11th International School of Trigger & Data Acquisition

User
Qualifiers
Parameters
Context

host

pc-mdt-
ros-bc-01

pc-mdt-
ros-eca-02

pc-mdt-
ros-ecc-02

pc-tdg-
onl-
12.cern.ch

19



Event Properties

* An Event shall contain:
* Importance Level (or Severity)

A human readable (and understandable)
explanation of the corresponding incident:

* A shifter calling you in the middle of a night can just
read it

* A source ID that identifies the origin of the
incident (Application or a HW module ID)

* The time stamp of the incident



Event Importance Levels

CRITICAL

» A fatal failure has occurred. This indicates that the component can
not do its work any more without external intervention

* Arecoverable error has happened

WARNING

* Nothingis bad so far but the system is close to a certain limit
* Do not neglect warnings as they tend to become errors

INFO

* An expected incident has occurred

DEBUG

* Detailed information used for testing and debugging
* This level corresponds to what we call Logs



Event Source ID Schema

* It’s important to know who reported a specific
event

* A common naming schema has to be developed in
advance and used by the Logging API
implementation:

* Allows easy grouping and filtering of events

* |s very helpful for scaling up the Monitoring Framework
implementation

* It may look like:
* Location.Application.Environment



Time Stamps

e Time Stamp is a vital property of an Event and of any
monitoring information in general:

Used for correlating events from different sources
Used for correlating monitoring events with real-life incidents

* The time stamp guidelines:

Use NTP service on all computers

Use the best possible precision (nanoseconds) when generating time
stamps

Use UTC time when reporting

Conversion to the human readable local time shall be done by a
event displaying applications with respect to its location




Finally, what to do with Logs?

* Logs are a sub-type of Events:
* Provides additional information for debugging

 Normally is used by human experts only:

* Not suitable for automated analysis by an event analytics
engine

 Amount of Logs usually exceeds the total amount of all
other types of Events

* The best destination for logs would probably be a
file system:
* Foresee enough space on the local disks

* Old logs can be archived or removed after some
configurable time



System Metrics

* Metrics are measures of properties in the software
or hardware system components:
* Have to be watched over time
* Crucial information for the monitoring

* Metrics should be kept as close as possible to the
properties being measured:

* In the White Box architecture Metrics are produced by
the SW Applications being monitored



Metric Types

* Gauge:
* A snapshot of a specific measurements

* CPU, memory, disk usage; voltages, currents, pressure,
etc.

* Timer:
* Time interval that is taken by a certain operation
* A kind of Gauge measured by a chronometer

 Counter:

* Monotonically increasing integer number ,
* Number of triggers, number of bytes sent/received, etc.,\

14/9/2020 11th International School of Trigger & Data Acquisition 26



Metrics Naming

* Each Metric shall have a unique IDs reflecting its origin
and the nature:
* Event Naming Schema + Metric Name
* Location.Application.Environment.Metric
* ATLAS.Dataflow.RecordedEvents.Counter

* Obeying to a common naming schema can greatly
simplify metrics handling:
* Easy selection and filtering using regular expressions

« Common operations like for example aggregation can be
split into multiple stages for scalability



Derivative Metrics

* Basic metrics are not very useful for
the Monitoring

 Mathematical transformations are
applied to the original values to
produce more useful numbers:
* Time based:

* Average, Min/Max and Median for
Gauges and Timers

* Rates for Counters

* Frequency distribution:
* Histograms for Gauges and Timers

16 1
1.4
121
1.0
0.8 1
0.6
0.4 1
0.2 1
0.0

al B Iy,
&=y,

gy, i,
i
Wiiny,,
1y,
i,

an

00 02 04 06 08 10 12 14 16 18 20 22

11th International School of Trigger & Data )8

14/9/202
/9/2020 Acquisition



Derivative Metrics Can be
Produced By...

* Metric Providers:
* Define and publish extra Metrics
 Example:

* Original Metric: ATLAS.Dataflow.RecordedEvents.Counter
e Derivative Metric: ATLAS.DataFlow.RecordedEvents.Rate

* Metrics Visualization Engine:
e Reads time series for the Counter Metric
* Calculates and display the Rate Metric on the fly

* Pro:
* Reduces the amount of data being stored and passed around
* Reduces Metrics production overhead

* Cons:
* Places more load on the visualization software

14/9/2020 11th International School of Trigger & Data Acquisition 29



An API| for Metric Providers?

e Unlike the Logging API for Events&Logs there is no
commonly accepted API for Metrics:

* SW tools for metrics collection and analysis use their proprietary
APIs
* This may not be a problem for a small short-living project:
* Directly using a specific SW APl is a viable option

* Be careful to choose a SW with the live-time going beyond your
project time-scale

* HEP experiments have a life-time of ~30 years:
 It’s difficult to find a SW system that is likely to survive that long



A Simple APl for Metric Providers

package Monitoring;
interface Gauge {
void setValue (double v) ;

}

interface Counter {

void increment () ;

}

interface Metric {
Gauge createGauge (String name) ;

Counter createCounter (String name) ;



Metrics Providers APl implementation can
give some extra benefits

* |solates dependency on the underlying SW tools:

e Switching from one SW to the other is transparent for the
system applications

* Enforces the Naming Scheme:

* The Application just provides a local Metric name, the prefix
is added automatically

* Ensures unigueness of the Metrics IDs

* Calculates derivative Metrics automatically with
respect to a given configuration:
* Applications don’t need to warry about that

* Keeps “Observation Effect” under control



“Observation Effect” e

* An observation has an overhead:

* It consumes some resources (CPU, memory, network
bandwidth)

* It may have an influence on the monitoring data
providing application:
* Depends on the monitoring framework architecture

* To minimize this overhead any communication with
external tools should be done asynchronously

14/9/2020 11th International School of Trigger & Data Acquisition 33



The Monitoring Framework Architecture

1
/ n__\ Push > / \
v | 2 Fasssiisisssasaas \, .
DAQ C | i | N l Message - EEE—— N Metric
S |i__Push > : . \___Push > i
Application | 2 3 - Queuing | o Ar.malyt.lcs :.md
g . .. g . Visualization
P _ N TS P
\\\(\/S v __:\_\ ﬁ/____ ,I\, ?\)”’,
N J g, S e Y

Metric Storage
* The underlying architecture is transparent for DAQ
applications:

* Central Storage implementation can be changed to a
Distributed Access one and vice versa

* Using both of them at the same time may also be a feasible
option

14/9/2020 11th International School of Trigger & Data Acquisition 34



The Market Overview

What tools can be used to implement a Monitoring
Framework



Metrics Checking Tools

* The same tools as for Events processing may be

used:

* Riemann - aggregates events from servers and applications with a
powerful stream processing language

* Esper - complex events processing streaming analytics

e Used in ATLAS for Shifter Assistant and Expert Systems
implementation

* This allows to define advanced rules based on both
Events and Metric

* Reduces time for development and simplify
maintenance of the Monitoring Framework



Storage Implementations

* Traditional relational databases may work well for a
small-scale project

* For a large DAQ system one should consider NoSQL
distributed alternatives:

 Whisper — a lightweight, flat-file database format for
storing time-series data

* InfluxDB — a time-series database that’s written in Go
e Cassandra — scalable, high availability storage platform

* MongoDB - a general purpose, document-based,
distributed database



Metric Visualization Tools

* There are many Open Source tools:
e Grafana - the open observability platform
* D3 - a Javascript library for data visualization
* Rickshaw — a Javascript library for data visualization
* Facette — a multi-data source dashboard written in Go
* There are a few others as well...

* In general It is a good idea to choose a tool that
supports RESTful interface for data access



RESTful Protocol

* REST — Representational State Transfer

e Client-server HTTP-based stateless communication
protocol

e Supported by most of the modern information storage
as well as Web-based Visualisation systems:

* Supports seamless interoperations

* Makes it easy to switch from one Storage or
Visualisation platform to another



REST Protocol Example

* Request:
https://atlasop.cern.ch/monitoring/
? 1d=ATLAS.Dataflow.RecordedEvents.Rate
& from=now-30d
& to=now

* Response:
Json Time Series, e.g.:
[
{t:1579104640,v:12345},
{t:1579104645,v:12354},
{t:1579104650,v:12354},
{t:1579104655,v:12352}



Web-based ATLAS Online Monitoring Customizable

Dashboard implemented using Grafana

% Grafana - Basic Dashboard fo: X

# Secure  https://atlasop.cern.ch/tda ¢ h

88 Basic Dashboard for ATLAS -

Root Control status

Data Fow Overview
Running State
|
'\
!
8/120:00 8/200:00 8/204:00 8/208:00 821200 872163

TDAQ Storage by Stream [B/s]

8/120:00 8/200:00 8/204:00 8/208:00 8/212:00 8/216:00

ROS Information

ROL Input Bandwidth [MB/s]

8/120:00 8/200:00 &204:00 820800 8212

HLT Farm Information

14/9/2020

L1 Output

8/120:00 8/2 00:00 8/2 04:00 8/2 08:00 8/212:00 8/21

TDAQ Storage by Stream [Hz]

8/120:00 8/200:00 8/204:00 820800 8212:00 8/216:00

ROS Request Rate [Hz)

8/120:00 8/200:00 8/204:.00 8/208:00 8212:00 8/216:00

ZoomOut > @ Aug1,2017 16:09:45 to Aug 2, 2017 1

Run Number

HLT Farm I/O Bandwidth [B/s]
128 8il
680l
320 Mil
16 Mil
800K
40K

2K

00 8/204:00 8/208:00 8/212:00 8/216:00

uon Calibration [MB/s]

8/120:00 8/200:00 8/204:00 8/208:00 8/212:00 8/216:00

Most recent LVL1 ID received

2080 |

0

8/120:00 8/200:00 8/204:00 8/208:00 8/212:00 8/216:00

11th International School of Trigger & Data Acquisition

Serguei

41



14/9/2020

Scaling up the
Monitoring
Framework

11th International School of Trigger & Data
Acquisition



The HEP Experimental Realm

* A DAQ system of a modern HEP
experiment includes:
e O(1K) computers and network devices
e O(10K) SW applications
 O(100K) HW sensors

* When choosing SW technologies for the Monitoring
Framework one has to consider:
 Number of monitoring data providers

 Number of metrics and their update rates

* The total amount of monitoring data produced for the life-time
of the experiment

* There are two approaches for scaling:
* Horizontal and Vertical

14/9/2020 11th International School of Trigger & Data Acquisition 43



Vertical Scaling

 Vertical Scaling is achieved by
increasing the power of
individual computers

* Vertical scalability heavily
depends on the tools used for
monitoring data processing:

 Some tools may scale better
than the others

* Should be taken into account
when choosing the right tools
for your project

11th International School of Trigger & Data

14/9/2020 Acquisition

44



Horizontal Scaling Works Better!

* Horizontal scaling works by adding more computers to the
system

* Horizontal scaling naturally maps to the Naming Schemas of
Events Sources and Metrics Names:

* Extra server(s) can be at different levels of the Naming Schema to
handle a respective sub-set of Events and Metrics

Location I @
Application —— @ @
@@@

11th International School of Trigger & Data

14/9/2020 Acquisition



DAQ Special:
Data Quality Monitoring



How to Monitor the Detector?

* Detectors of LHC experiments are Vo
incredibly complex devices:

* Up to 108 output data channels
* Mostly custom electronics
* 40 MHz operational frequency

e Traditional monitoring would
yield in O(1) PHz (petahertz) of
metrics update rate:

* These metrics are not even
attempted to be produced
explicitly

 However DAQ system has a

Electromagnetic
calorimeters

Barvel toroid

Hadronic calorimeters

handle on these metrics...

11th International School of Trigger & Data

1 202
4/3/2020 Acquisition

47



Detector Metrics

20489082 2057efb2 205a8616 2063cce2 2066aee2 2068a0c2 20768ff7 99522077
000 000000O 000001 d04326b2 dd1234dd 0000002d

e Fragment 0x61: MDT
e Each Phys|c5 Event taken % el ESSE EEEEEEEBarreIsideAgiij L E3?§§233 Pot7eo1>

oo eo wswe2034 afb7400 (MOdulo 2) |53c owae 95829672 2063c2e2

207} 5e2 2075d5b2 207aaB92 & 2207b Ed72f§§;/66990999 00000000 00000002
from the d ete Cto r by th e 3de510d4 dd1234dd 00000031 006|009 04009400 0610002 BOG0E0G2 0B0B0E0E
eel234ee 00000009 03010000 00610002 POO33dac 920117d5 00OD0aasd 0000081
. 201leed2 efc22012 93222013 e2822014 97022017 el82201b e0222025 eaa22027
DAQ System CO nta | nS 84b22035 c5c2cch2 2036ebc2 20389672 20508002 95222051 d3172056 9ee22057
2060ad62 2061c4a2 2063ddb7 20649542 00000000 0OOOONEO KAOOEO02 OEOEO1Y
. dd1234dd 00000029 00000009 q@eeeeea 00610003 00000002 00000000 92011d86
m etrlcs fo r a Su b_set Of 00000009 03010000 00610003 F\p33dac 920117d5 00000aa8 00000081 | PEOGOOO
2031d692 20369542 2037ed92 | 409c92 ace22044 9a822046 a0e22047) 3422048

e172205h 4872060 8£82206( | oY 324000 00000000 000000

R
d ete CtO r C h a n n e I S . aeaafel5 dd1234dd 0000003 04000000 00610004 0880003>Traller )
. ge123488 00000009 03010000 00610004 POO33dac 920117d5 00OD0aal CULOOUEL

htip://atlas.ch

* An expert can spot RATLAS

problems by looking into
a graphical event
representation

* This is of course very
difficult and unreliable




Automated Data Quality
Analysis
* Dedicated DAQ applications apply Samle

standard physics analysis algorithms to a ZfPh;/sics
statistical sub-set of the Physics Events: vents

* Extract Detector Metrics and build their Physics Event
statistical distributions(histograms) Analysis
* Analyze histograms and produce a new set Algorithms
of Metrics — Data Quality statuses
Statistical
Distribution

ATLAS
Pb+Pb 2011 Data
Unsubtracted

L1 Jot E, [GeV]

Statistical
< Analysis
Algorithms

14/9/2020 11th International School of Trigger & Data Acquisition 49



14/9/2020

Wrap-up

11th International School of Trigger & Data
Acquisition

50



Key Points to Keep in Mind when
designing A Monitoring Framework

©

e Use standard Monitoring APlIs if possible: \'DON\T
* e.g. Logging API ‘;OLGET
-

Think carefully when designing a custom API: \
* It should not depend on a particular technology

Use off the shelf solutions for the Monitoring Framework
components, e.g. Analytics and Visualization:

* A custom made implementation should be well justified

It is acceptable that only Monitoring APIs are available at the very
beginning:
* Monitoring Framework implementation will evolve in the course of
DAQ system development for the mutual benefit



