Standards for Modular Electronics

the past, the present and the future

Markus Joos CERN

- The past:
 - RIM
- The present:
 - PCI and PCIe
 - SHB Express
- The future:
 - Serial interconnects

1

- · vxs
- · ATCA
- · M7CA

Why Modular Electronics?

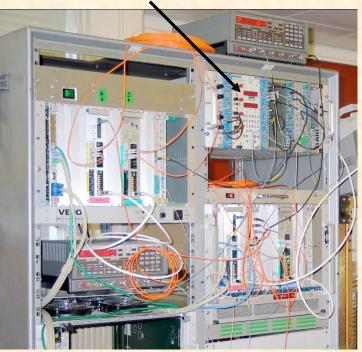
- As in programming a system becomes unmanageable if too much functionality is put into a single functional block
- Modularizing DAQ electronics helps in these respects:
 - Allows for the re-use of generic modules in different applications
 - Limiting the complexity of individual modules increases their reliability and maintainability
 - You can profit from 3rd party support for common modules
 - Makes it easier to achieve scaleable designs
 - Upgrades (for performance or functionality) are less difficult
 - Etc.

Why use Standards?

- Benefit from 3rd party products, services and support
- Competition gives you better prices and alternative suppliers
- Standards make it easier to define interfaces between sub-systems
- But not all standards are equally good:
 - Too old: poor performance, few suppliers, expensive
 - Too new: Interoperability issues, unclear long term support
 - Too exotic: Too few suppliers (sometimes just one)

NIM

- Initially (1964): NIM = Nuclear Instrument Modules
 - But it was used outside of "nuclear science"
 - Therefore: NIM = National Instrument Modules
 - But is was used outside of the USA
 - Therefore: NIM stands for NIM

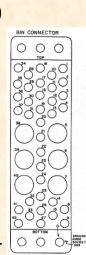

NIM modules (usually)

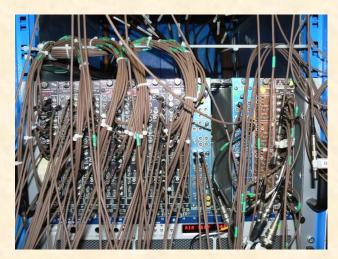
- Need no software
- Are not connected to a computer
- Are used to implement trigger logic These functions (any many others) are available
- Discriminators
- Coincidences
- Amplifiers
- Timers

. . . .

- Logic gates (and / or)
- Level converters
- HV power supplies

NIM crate

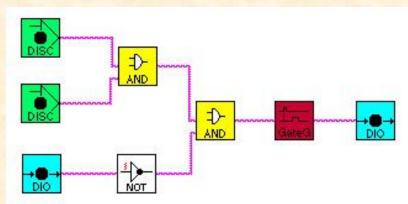

A small DAQ system


NIM basics

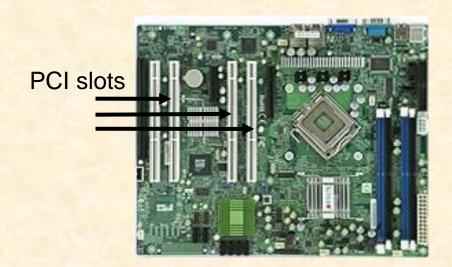
- 1st NIM standard: July 1964
 - 1st commercial module: November 1964
- Module dimensions: 34 x 221 x 246 mm
- NIM logic levels:
 - 0 = 0A (0V)
 - 1 = -12 to -32 (typical -16) mA at 50 Ω (-0.8V)
- NIM connector
 - 42 pins in total
 - 11 pins used for power (+/- 6, 12, 24V)
 - 2 logic pins (reset & gate)
- 29 pins reserved for future use since 1964
- 1983 NIM digital bus (IEEE 488 GPIB)
 - Rarely used

NIM connector

NIM – the next generation

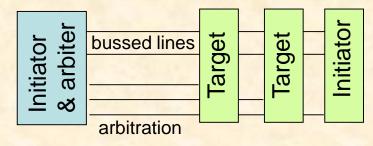

NIM is still very alive Some examples

100 MS/s digitizer with optical read-out


General purpose NIM module with programmab le logic (LabView)

PCI

- First standardized in 1991
- Replaced the older ISA cards
- Initially intended for PC cards
 - Later spin-offs: CompactPCI, PXI, PMC ①
- Parallel PCI has almost disappeared -> replaced by serial PCIe
 - But there are still some ICs with parallel PCI in use on modern PCs/SBCs


PC motherboard

12.000

PCI basics

- Main features of the original parallel protocol (not to be confused with PCIe)
 - Synchronous timing
 - But wait cycles possible
 - Clock rates
 - Initially 33 MHz. Later: 66 MHz, (PCI-X: 100 and 133 MHz)
 - Bus width
 - Initially 32 bit. Later: 64 bit
 - Signaling voltage
 - Initially 5 V. Later 3.3 V (->slot keying)
 - Terminology
 - A data transfer takes place between an INITIATOR (master) and a TARGET (slave)
 - Bus topology
 - 1 to 8 (depending on clock rate) slots per bus
 - Busses can be connected to form a tree
 - Address and data as well as most protocol lines are shared by all devices; The lines used for arbitration are connected point-to-point; The routing of the interrupt request lines is more complicated...
 - A system can consist of several Initiators and Targets but only one Initiator can receive interrupts

PCI basics - 2

- Address spaces
 - Configuration space
 - Standardized registers for the dynamic configuration of the H/W (plug-and play)
 - I/O space
 - For device specific registers
 - MEM space
 - General purpose space for registers and memory
- Cycle types (encoded in the C/BE[3::0]# lines)
 - Single cycles
 - Read / write of all 3 address spaces
 - Bursts
 - MEM read / write (with special features for cache handling)
- (Typical) performance
 - Single cycle: 2 (3 for read) -> ~10 clock cycles
 - 33 MHz / 32 bit: 66 MB/s -> ~10 MB/s
 - 64 MHz / 64 bit: 264 MB/s -> ~40 MB/s
 - Bursts:
 - 33 MHz / 32 bit: Max. 132 MB/s
 - 64 MHz / 64 bit: Max. 528 MB/s
 - PCI-X @ 133 MHz: 1.06 GB/s
 - PCI-PCI bridges add additional delays

PCI devices under Linux

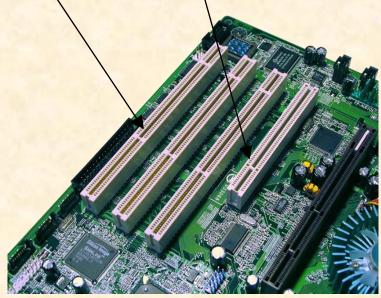
The command "Ispci" displays information about the PCI devices of a computer Show PCI tree: Ispci -t -v

```
-[0000:00]-+-00.0 Intel Corporation E7520 Memory Controller Hub
        +-00.1 Intel Corporation E7525/E7520 Error Reporting Registers
       +-01.0 Intel Corporation E7520 DMA Controller
        +-02.0-[0000:01-03]--+-00.0-[0000:02]----03.0 CERN/ECP/EDU Unknown device 0144
                            +-00.1 Intel Corporation 6700/6702PXH I/OxAPIC Interrupt Controller A
                            +-00.2-[0000:03]---01.0 CERN/ECP/EDU Unknown device 0144
                            \-00.3 Intel Corporation 6700PXH I/OxAPIC Interrupt Controller B
        +-04.0-[0000:04]----00.0 Broadcom Corporation NetXtreme BCM5721 Gigabit Ethernet PCI Express
        +-05.0-[0000:05]----00.0 Broadcom Corporation NetXtreme BCM5721 Gigabit Ethernet PCI Express
        +-06.0-[0000:06-08]----00.0-[0000:07-08]--+-04.0 Broadcom Corporation NetXtreme BCM5714 Gigabit Ethernet
                                                 +-04.1 Broadcom Corporation NetXtreme BCM5714 Gigabit Ethernet
                                                 \-08.0-[0000:08]--+-06.0 Broadcom Corporation NetXtreme BCM5704 Gigabit Ethernet
                                                                   \-06.1 Broadcom Corporation NetXtreme BCM5704 Gigabit Ethernet
        +-07.0-[0000:09-0b]--+-00.0-[0000:0a]----02.0 CERN/ECP/EDU Unknown device 0144
                            +-00.1 Intel Corporation 6700/6702PXH I/OxAPIC Interrupt Controller A
                            +-00.2-[0000:0b]----01.0 CERN/ECP/EDU Unknown device 0144
                            \-00.3 Intel Corporation 6700PXH I/OxAPIC Interrupt Controller B
        +-1d.0 Intel Corporation 82801EB/ER (ICH5/ICH5R) USB UHCI Controller #1
        +-1d.1 Intel Corporation 82801EB/ER (ICH5/ICH5R) USB UHCI Controller #2
        +-1d.2 Intel Corporation 82801EB/ER (ICH5/ICH5R) USB UHCI Controller #3
        +-1d.3 Intel Corporation 82801EB/ER (ICH5/ICH5R) USB UHCI Controller #4
        +-1d.7 Intel Corporation 82801EB/ER (ICH5/ICH5R) USB2 EHCI Controller
        +-1e.0-[0000:0c]----01.0 ATI Technologies Inc Rage XL
        +-1f.0 Intel Corporation 82801EB/ER (ICH5/ICH5R) LPC Interface Bridge
        \-1f.3 Intel Corporation 82801EB/ER (ICH5/ICH5R) SMBus Controller
```

Show device details: lspci -v -s 02:03.0

02:03.0 Co-processor: CERN/ECP/EDU Unknown device 0144 (rev ac) Subsystem: Unknown device 2151:1087 Flags: bus master, 66MHz, medium devsel, latency 32, IRQ 209 Memory at d7200000 (32-bit, non-prefetchable) [size=512] I/O ports at 2000 [size=256] Memory at d8000000 (32-bit, non-prefetchable) [size=16M] Capabilities: <access denied>

Parallel PCI protocol Example: Single cycle read CLOCK FRAME# Address Data A/D **BUS CMD** BE#'s C/BE# IN **IRDY#** TRDY# DEVSEL# Data phase Address phase

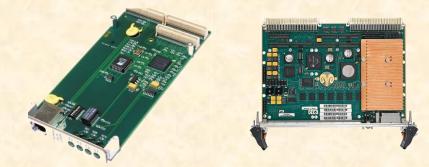

- 1) Assertion of FRAME starts cycle
- Initiator puts address and command (cycle type) on the bus
- 3) The Initiator signals that it is ready to receive data
- The initiator uses the C/BE lines to define which bytes it wants to read
- 5) Target looks at the Address and drives DEVSEL if it was addressed. If no target drives DEVSEL after at most 6 clock the Initiator will abort the cycle
- 6) The ownership of the AD lines changes from Initiator to target (only for read cycles). This requires one clock cycle

- 7) The Target does not yet drive TRDY (it may need time to prepare the data) but asks the Initiator to wait
- 8) The Target has the data ready on the AD lines. The Initiator fetches the data in the same clock cycle
- By de-asserting FRAME the Initiator tells to the Target that it does not want additional data after the next data word
- 10) The cycle is over and the protocol lines get released

Some examples of Parallel PCI H/W

32 bit slot with 5V key

64bit slot with 3.3V key



PC motherboard with PCI slots

6U CompactPCI chassis and card

PMC card and carrier (VMEbus)

CompactPCI (and friends)

Year	1995
Module dimensions	Same as 3U and 6U VMEbus
Connector	Various type (parallel and serial protocol)

Special features

- Based on the PCI(e) protocol
- Many derivatives: CompactPCI Serial, CompactPCI PlusIO, PXI, CompactPCI Express
- S/W compatibility in PCI->PCIe migration
- Single master (scalability)

Why was / is it partially successful?

- No large performance advantage over (well established) VMEbus
- Too late to market
- Many modules for Test & Measurement (PXI)

Parallel bus -> Serial link

Parallel Buses Are Dead! (RT magazine, 2006)

What is wrong about "parallel"?

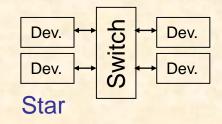
- You need lots of pins on the chips and wires on the PCBs
- The skew between lines limits the maximum speed

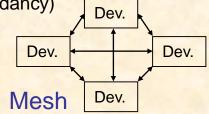
What is wrong about "bus"?

- Speed is a function of the length (impedance) of the lines
- Communication is limited to one master/slave pair at a time (no scalability)
- The handshake may slow down the maximum speed

All parallel buses are dead. All? No!

- VMEbus is still used (military / research)
- There is lots of PCI legacy equipment


What next?


Switched serial interconnects

(Switched) serial links

- Standards (just the most important)
 - PCle
 - 1 / 10 GB Ethernet
 - Serial RapidIO
 - Infiniband
 - Serial ATA
 - FiberChannel
- Commonalities
 - Signal rate: 2.5 10 GHz
 - Packet switching
 - Topology
 - Star: Devices connect to a fabric switch
 - Dual Star: Devices connect to two fabric switches (for redundancy)
 - Mesh: All devices have direct links to all others
- Differences
 - Support for interrupts
 - Support for programmed I/O
 - Quality of service (guaranteed bandwidth)

Infiniband

- Developed by Compaq, IBM, Hewlett-Packard, Intel, Microsoft and Sun from 1999 onwards
- Characteristics
 - Bi-directional serial link
 - Aggregation of links (4x, 12x possible)
 - Link speed: 2.5, 5, 10 GHz
 - Special features
 - Data transfer performed without involvement of OS (latency < 2 μs)
 - Remote DMA (fetch data from the memory of a remote system)
 - Main field of application
 - Server and storage interconnect for high performance computing
 - Relevance for DAQ
 - Limited for a lack of DAQ F/E products
 - Used by CMS for the HLT N/W

Serial Rapid I/O

- Developed by Mercury Computer Systems and Motorola from 1997 onwards
- Characteristics
 - Bi-directional serial link
 - Aggregation of links (2x, 4x, 8x, 16x possible)
 - Link speed: 1.25, 2.5, 3.125, 5, 6.25 GHz
 - Special features
 - Quality of Service (transfer requests can be prioritized)
 - Multicast
 - Main field of application
 - Chip/chip and board/board communication
 - Relevance for DAQ
 - Limited for a lack of DAQ products but some AMC/ATCA products

PCIe (aka PCI Express)

- Not a bus any more but a point-to-point link
- Data not transferred on parallel lines but on one or several serial lanes
 - Lane: One pair of LVDS lines per direction
 - Clock rate: 2.5 GHz (PCIe2.0: 5 GHz, PCIe 3.0: 8 GHz, PCIe 4.0: 16 GHz)
 - 8b/10b encoding (PCIe3.0 & 4.0: 128/130b encoding)
 - 250 MB/s (PCIe 1.0) raw transfer rate per lane
 - Devices can support up to 32 lanes
- Protocol at the link layer has nothing to do with protocol of parallel PCI
- Fully transparent at the S/W layer

PCIe performance

Data is transferred in frames:

Start	Sequence	Header	Payload	ECRC	LCRC	End
1 byte	2 bytes	12 or 16 bytes	0 - 4096 bytes	4 bytes	4 bytes	1 byte

- Note:
 - H/W may limit max payload size (typically 128, 256 or 512 bytes)
 - Every data packet has to be acknowledged (additional overhead)
 - Read transactions may cause additional delays
- The actual performance may be as low as ~15% of the theoretical maximum
- Achieving more than ~80% link efficiency is difficult
- The topology of the system (PC motherboard) matters as well
- You may have to use process / tread affinity in order to tie your I/O code to the CPU that connects directly to your I/O cards

PCIe applications

Lately PCIe cards have become trendy

- The server that hosts them provides:

- Power, cooling, mechanical enclosure
- Computing power

Examples (custom designs):

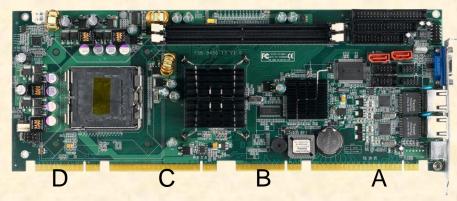
- BNL FLX-712: 48 optical channels (10 Gbps)
 - Used by ATLAS for new read-out (will replace some VME systems)
 - Used by protoDUNE
 - Under discussion for sPhenix
- LHCb PCle40
 - Also used by ALICE and Mu3E(PSI)

Limitations:

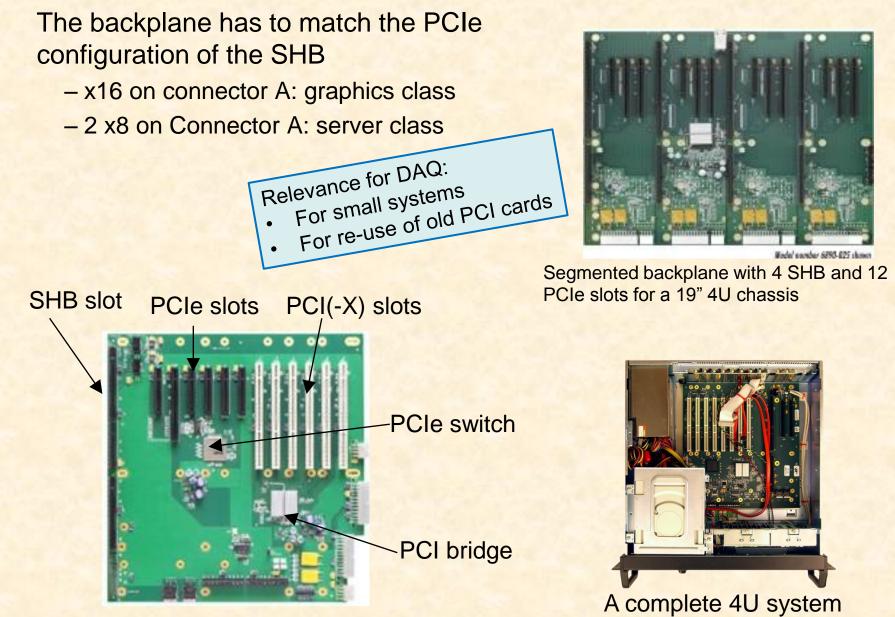
- Space for I/O (front panel)
- PCB size (two large FPGAs won't fit)
- Cooling capacity

LHCb PCIe40

PICMG 1.3 – The basic idea


- A desk-top PC has at most 7 slots for PCI(e) cards
- PC motherboards are quickly getting obsolete
 - Let's design a standard that is more adapted for using PCI cards in an industrial domain
 - Modularize system by decupling computing core from PCI card backplane

PICMG 1.3 – SHB Express


- SHB Express = System Host Board standard for PCIe
- Standardized in 2005
- Defined in the standard
 - SHB board mechanics (two board formats)
 - PCI(e) interface between SHB and backplane
 - Additional I/O (SATA, USB, Ethernet, etc.) that may be routed to the backplane
 - Backplane design rules
- Systems consist of:
 - One SHB
 - One backplane
 - One or several PCIe, PCI-X or PCI cards

The SHB

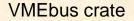
- Two (A & B) or 4 (A, B, C & D) connectors
 - Connector A: PCIe
 - (1 x16) or (2 x8) or (1 x8 + 2 x4) or (4 x4)
 - Connector B: PCIe
 - (1 x4) or (4 x1)
 - Connector C:
 - Additional I/O
 - Connector D:
 - 1 32bit PCI(-X)

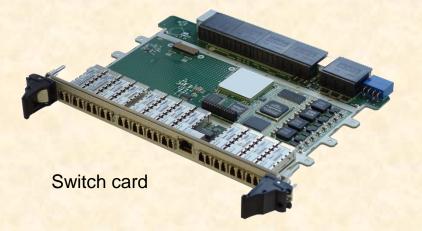
SHB – the backplanes

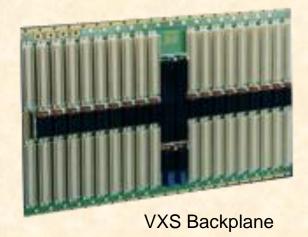
The next generation What new standards are available?

- VITA41: VXS
- PICMG 3.x: ATCA (Advanced Telecommunications Computing Architecture)
- PICMG MTCA.x: MicroTCA/µTCA
- PICMG AMC.x: Advanced Mezzanine Card (for ATCA and µTCA)

Not covered in this talk:


- VITA46: VPX
- PICMG 2.x: Compact PCI (cPCI)
- PICMG EXP.0: PCIe for cPCI
- PCIMG CPCI-S.0: CompactPCI serial
- PICMG ATCA300.0: ATCA for 300mm deep systems (no rear I/O)
- And many more...


VXS – The basic idea


- VMEbus mechanics is no so bad:
 - Let's keep it
- There is a lot of legacy equipment:
 - Let's re-use it
- The data transfer bandwidth could be better:
 - Let's add an optional high-speed communication channel

VXS - Components

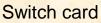
Payload card

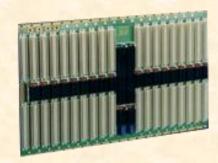
VXS (VITA 41, ~100 pages)

- Essentially 6U (but 9U not excluded) VMEbus with a new P0 connector
- Two types of cards
 - Payload _
 - Switch (one card required, second for redundancy)
- Network topology: (dual) star
- **Connectivity for payload cards**
 - 16 differential pairs (10 GHz) defined by the standard (and routed to switch cards)
 - 31 reserved pins available on P0
- Sub-standards
 - 41.1: Infiniband
 - 41.2: Serial RapidIO
 - 41.3: IEEE Std 802.3 (1000 Mb/s Ethernet)
 - 41.4: PCle
- Hot Swap: According to VITA 1.4
- System management based on I²C / IPMI but only formulated as recommendation

Why was / is it NOT successful?

- Had to compete with xTCA Did not address many shortcomings of VMEbus •
- Power, cooling, management, hot swap, module width


 - Backwards compatibility not necessarily an advantage
- •

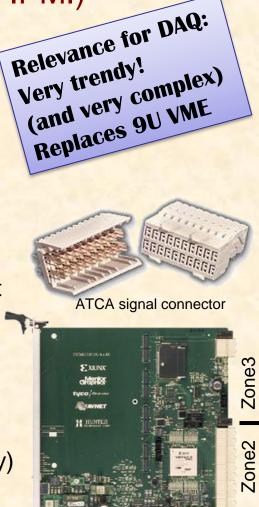

٠

VXS connector


Backplane

Advanced TCA – the basic idea

• Telecom companies are using proprietary electronics:


- Let's design a standard for them from scratch
- It has to have all the features telecom companies need:
 - High availability (99.999%)
 - Redundancy at all levels
 - Very high data throughput
 - Sophisticated remote monitoring and control

Advanced TCA - Components

Advanced TCA (650 pages + IPMI)

- More of a system than a board standard
- Started in 2001 by ~100 companies
- One form factor
 - Front: 8U x 280 mm x 30.48 mm (14 slots per 19" crate)
 - Rear: 8U x 60 mm (5W)
- Supply voltage: -48 V (-> DC-DC conversion each on-board)
- Power limit: 200 W (400-600-800 W) per card
- Connectors
 - Zone 1: One connector for power & system management
 - Zone 2: One to five ZD connectors for data transfer
 - Zone 3: User defined connector for rear I/O
- Connectivity
 - Up to 200 differential pairs
 - 4 groups
 - 64 pairs for Base Interface (usually Eth., star topology)
 - 120 pairs for Fabric Interface (star or full mesh)
 - Ethernet, PCIe, Infiniband, serial RapidIO, StarFabric
 - 6 pairs for Clock Synchronization
 - 10 pairs for Update Channel
- System management based on IPMI, I²C and FRU data

ATCA board

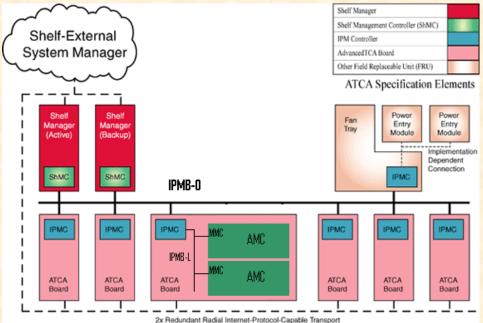
Zone1

ATCA HA features (applies also largely to µTCA)

Redundancy

- Power Supply modules
- Ventilators
- Shelf managers
- Switch blades

Electronic Keying

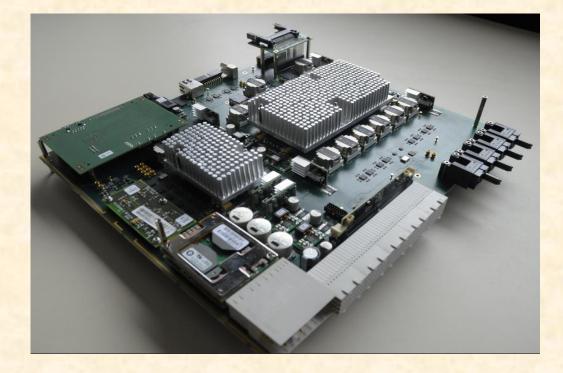

- Based on FRU information payload cards may be accepted / rejected in a given slot
 Hot swap
- Payload board will only receive (payload) power if the shelf manager can guaranty for the availability of the required resources (power, cooling, signal connections)

Monitoring

- Low level: IPMI on I²C
- High level: SNMP (Simple Network Management Protocol) and other protocols on top of TCP/IP
- System event logs

Cooling

Dynamically controlled fans and several alarm levels



Dedicated tree for control and monitoring

ATCA – An example

The ATLAS L1Topo board

- 2 Xilinx Virtex7 XC7V690T FPGAs for data processing
- 1 Kintex7 FPGA for control and data transmission
- 22 layers PCB
- Processes 1 Tb/s with a latency budget of 150 ns

AMC – The basic idea

- ATCA blades are big. Small mezzanine modules could be helpful to modularize their functionality
- PMC/XMC mezzanines are not hot-swappable
 - Let's design a new type of mezzanine for ATCA

AMC

- Originally intended as hot-swappable mezzanine standard for ATCA but soon used as the basis for the µTCA standard
- 6 form factors:
 - 74 or 149 mm wide
 - 13, 18 or 28 mm high
 - 180 mm deep
- Power supply: 80W (max) on +12V (and 0.5W on 3.3V management power)
- Connector: 85 pin (single sided) or 170 pin (double sided) edge connector
- Connectivity
 - Up to 12.5 Gb/s
 - 20+20 LVDS signal pairs for data transfer (Eth, PCIe, SAS/SATA, Serial RapidIO)
 - Clock interface, JTAG
- Managed via local microcontroller (MMC)
 - IPMI messages on I²C

µTCA / MTCA – The basic idea

- AMC mezzanines are great but ATCA is a heavy standard and the H/W is expensive
 - Let's define a standard that allows for using AMCs directly in a shelf (i.e. Promote the AMC from "mezzanine" to "module")

µTCA / MTCA - Components

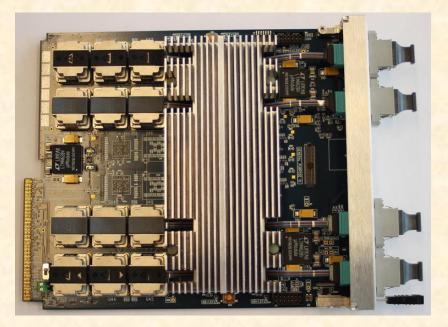
Shelves

AMCs

μΤCΑ

- A system standard based on the AMC, standardized in 2006
- Min. signaling speed: 3.125 GHz
- **Connectivity:**
 - 4 AMC LVDS pairs defined as "Common Options" (2 Eth. & 2 SAS ports) and connect to 1 or 2 MCH boards which provide the switching
 - 8 AMC LVDS pairs defined as (extended) fat pipes (1 or 10 G Eth, PCIe, RapidI/O). Connection to MCH not standardized
 - Remaining 8 LVDS pairs not defined (can be used for rear I/O (but rear I/O not foreseen) in uTCA standard))
- System management based on IPMI / I²C
- Hot-swap support for PSU & cooling
- Redundant MCH (µTCA Controller Hub)
- The MCH connector supports up to 84 differential pairs. Therefore only 7 pairs per AMC (based on a 12-slot backplane) can be routed to the switch.

	Connector Region	AMC Port #	Signal (Convention	5		MCH Fabric #		
		G	AMC.2 1000Base-BX			A			
	Common Options	1	AMC.2 1000Base-BX			2/A			
		2	AMC.3 SAS				B		Sec. 2
		3			AMC.3 SAS		2/B		
	6.4	4	AMC.1 x4	AMC.4 ×4	AMC.2 1000Base-BX	AMC.2	D	F. D.	
	Fat Pipes	5		SRIO	4840.0	10GBase-BX4	E		
		6]		AMC.2 1000Base-BX		F		<u></u>
		7]		AMC.2 1000Base-BX		G		Д
	Extended	8		AMC.4 ×4	AMC.2 1000Base-BX	AMC.2	2/D		-
	Fat Pipes	9]	SRIO	AMC.2 1000Base-BX	10GBase-BX4	2/E		
	1.425	10]		AMC.2 1000Base-BX		2/F		
		11			AMC.2 1000Base-BX		2/G		



µTCA – An example

The CMS MP7 AMC

- A generic stream-processing engine
 - Main workhorse for the calorimeter trigger
- One Virtex-7 (XC7VX690T) FPGA
- 144 differential pairs running at 10 Gb/s
 - 72 Rx, 72 Tx
- To date, the MP7s of CMS have transferred in excess of an Exabit of data without an observed error, giving a limit on the per-board bit-error rate of approximately 3 * 10⁻¹⁷.
- Lessons learned:
 - Power budget (80W) at the limit
 - Density very (too?) high
 - CMS now looking into ATCA

xTCA degrees of freedom (not necessarily a complete list)

• ATCA

- Communication protocol(s) on the fabric channels
- Routing of the fabric channels on the backplane (network topology)
- Connection between front board and RTM
- Degree of redundancy
- Power supply at shelf level (230 VAC or -48 VDC)

• AMC

- Card height (13, 18 & 28 mm)
- Card width (74 & 149 mm)
- Communication protocols (currently 4 options)
- Number of pins on the connector (85 or 170)
- JTAG support
- uTCA
 - AMC height & width
 - Degree of redundancy (MCH, PSU, cooling)
 - Routing of the fabric channels on the backplane (custom backplanes)
 - JTAG support
 - Connectivity of MCH to backplane (1 to 4 tongues) and type of communication protocol on the fat pipes
 - Rear transition modules (MTCA.4)

xTCA issues

- The operation of an xTCA system requires a complex, standard compliant S/W infrastructure
 - Efforts to provide open source management S/W for xTCA: OpenSAF, SAForum
- As many features of the standard(s) are optional, products from different vendors may not be compatible
 - Efforts to insure interoperability of xTCA products: CP-TA, SCOPE alliance
 - Interoperability workshops
- Sub-standards for use in "physics"
 - ATCA 3.8: Standardizes RTMs and clock signals
 - MTCA.4: Adds RTMs (and other features) to MTCA. AMCs communicate via PCIe
- The market does not yet provide lots of front end modules for physics DAQ
 See: http://mtca.desy.de/
- There is little information available about the system performance (end to end H/W performance and S/W overhead) of the data transfer links
 - This makes it difficult to dimension a DAQ system

Mezzanines

A "module" is not necessarily monolithic. Often it carries mezzanines Use mezzanines to:

- Improve maintainability (mezzanines are easy to replace)
- Implement general purpose functions (e.g. controller, ADC, DC/DC)

FMC

- Some popular mezzanine standards
 - PMC (IEEE P1386.1)
 - Relatively old PCI based standards for VMEbus, CompactPCI, etc.
 - XMC (VITA 42)
 - PMC with additional high speed interface (e.g. PCIe)
 - FMC (VITA 57)
 - Small mezzanine for FPGA based designs
 - Heavily used (not only) on MTCA

PMC

Complexity is increasing

(but how can we measure that?)

By the number of pages of the standard?

Standard	Number of Pages	
ATCA	660	
MTCA	540	
MTCA.4	100	
AMC	370	
IPMI 1.5	460	
VME64	306	
VME64X	100	
VXS	60	
VPX	107	
NIM	75	

By the number (sub)-standard documents?

Standard family	Number of documents
ATCA (with HPM)	12
MTCA (with HPM)	8
AMC	5
VME64x	10
VXS	4
VPX	19
cPCI (with Serial and Express)	21

Note: Only the base documents are listed Sub-standards increase the volume further. Standards for the communication protocols (PCI, Eth, etc.) are also not counted Complexity leads to interoperability issues and long development cycles

How much xTCA for the upgrade of the LHC Experiments?

- All experiments have looked at xTCA for various upgrade projects and took different roads....
 - ALICE: No xTCA (but PCIe cards in servers and still VMEbus)
 - ATLAS: ATCA
 - CMS: MTCA (and later also ATCA)
 - LHCb: No xTCA (but PCIe cards in servers)

xTCA features in they eyes of the LHC experiments:

xTCA feature	ALICE	ATLAS	CMS	LHCb
Redundancy of I/O modules	Not important	Not important	Not important	Not important
Board space	MTCA sufficient	ATCA needed	MTCA and ATCA needed	PCIe sufficient
Cooling	Server PC sufficient	Important. Up to 400 W per blade	Important	Server PC sufficient
Integration density	Minor advantage	Not important	Minor advantage	Not important
Hot Plug	Not important	Not important	Used but not crucial	Not important
Costing	Chosen solution cheaper	Not an issue	Good deal	Chosen solution cheaper
xTCA strong points	None	Cooling, card size, PSU, IPMI (powerful but complex)	Good (but complex) system standards	Cooling and PSU quality. PCs may be less reliable

Science fiction

• PICMG has announced GEN4 in 2014

- <u>http://www.picmg.org/gen4-new-high-performance-platform/</u>
- System throughput (to hundreds of terabits/s), module bandwidth (to tens of terabits/s), and storage capacity in exabytes.
- Module cooling capacity (over 2000 Watts, with fluid cooling options)
- Not H/W compatible with ATCA
- What I read in my crystal ball:
 - Don't expect H/W before 2020++ (now progress update since 2014)
 - Try not to be an early adopter

Optical backplanes

- Not a new idea
- Already exist for niche applications
- Very expensive
- What I read in my crystal ball:
 - Will come but not anytime soon

Servers

- Data processing may shift from FPGA to CPU (or hybrids)
- Networks will play a more important role
- Servers with custom PCIe I/O cards may become (more) attractive
- No longer science fiction for LHCb and ALICE

So, what is the right standard for me?

- This obviously depends on your requirements
 - Bandwidth & latency
 - Availability of commercial products (front end)
 - Existing infrastructure (S/W and H/W) and expertise in your experiment
 - Start and duration of the experiment
 - Scalability requirements

Trends in HEP

- LHC & experiments @ CERN: Still VMEbus & PCI based
 - CMS: Several µTCA systems in operation, ATCA coming
 - ATLAS: ATCA as VMEbus replacement, many R&D and completed projects
 - LHCb and ALICE: first favored ATCA then decided to go for PCs
 - Beam control: µTCA for (non LHC) machine control
- Control systems of new accelerators: µTCA everywhere
 - XFEL @ DESY: 250 systems
 - FAIR @ GSI, ESS, MYRRHA, Wendelstein 7-X, KEK, J-PARC, IHEP, etc.

Resources

- Think "open"
 - Open H/W:
 - https://www.ohwr.org/
 - Open cores:
 - <u>https://opencores.org/</u>
 - <u>https://oliscience.nl/</u>
- Standards organizations:
 - PICMG: www.picmg.org
 - PCI-SIG: www.pcisig.com
 - VITA: www.vita.com