
January 13, 2020

Alessandro Thea
Rutherford Appleton Laboratory - PPD

International School of Trigger
and Data Acquisition

ISOTDAQ

Programming

for Today’s Physicists and Engineers
ISOTDAQ 2020
University of Valencia, Valencia

January 13, 2020

Alessandro Thea
Rutherford Appleton Laboratory - PPD

International School of Trigger
and Data Acquisition

ISOTDAQ

Programming

for Today’s Physicists and Engineers
ISOTDAQ 2020
University of Valencia, Valencia

How to Survive

page Alessandro TheaISOTDAQ 2020 - Programming for Today’s Physicists and Engineers

•Disclaimer: This is more a collection of pointers* than a tutorial, it’s a starting point…
•(Almost) no code but a bias towards C++ and Python

•Note: While the lecture focus is software, most of the content equally applies to firmware programming.

•

2

Opening words

Acknowledgment: Slides are based on previous lectures by Joschka Poettgen (Lingemann) and
Erkcan Ozcan

*further reading and tips in
these boxes

page Alessandro TheaISOTDAQ 2020 - Programming for Today’s Physicists and Engineers3

What is programming?

Computer

D A

R

Requirements

Design

ImplementTest

Deploy

page Alessandro TheaISOTDAQ 2020 - Programming for Today’s Physicists and Engineers

• Understand & define the problem to solve

‣ Define the requirements for your software

3

What is programming?

Computer

D A

R

Requirements

Design

ImplementTest

Deploy

page Alessandro TheaISOTDAQ 2020 - Programming for Today’s Physicists and Engineers

• Understand & define the problem to solve

‣ Define the requirements for your software

• Formulate a possible solution (design)

3

What is programming?

Computer

D A

R

Requirements

Design

ImplementTest

Deploy

page Alessandro TheaISOTDAQ 2020 - Programming for Today’s Physicists and Engineers

• Understand & define the problem to solve

‣ Define the requirements for your software

• Formulate a possible solution (design)

‣ Identify key functionalities and features

• Implement the design
‣ Choose the language

‣ Write code, debug it
‣ Prepare documentation

3

What is programming?

Computer

D A

R

Requirements

Design

ImplementTest

Deploy

page Alessandro TheaISOTDAQ 2020 - Programming for Today’s Physicists and Engineers

• Understand & define the problem to solve

‣ Define the requirements for your software

• Formulate a possible solution (design)

‣ Identify key functionalities and features

• Implement the design
‣ Choose the language

‣ Write code, debug it
‣ Prepare documentation

• Validate the code

‣ Perform thorough verification

3

What is programming?

Computer

D A

R

Requirements

Design

ImplementTest

Deploy

page Alessandro TheaISOTDAQ 2020 - Programming for Today’s Physicists and Engineers

• Understand & define the problem to solve

‣ Define the requirements for your software

• Formulate a possible solution (design)

‣ Identify key functionalities and features

• Implement the design
‣ Choose the language

‣ Write code, debug it
‣ Prepare documentation

• Validate the code

‣ Perform thorough verification
‣ Execute unit and system tests

• Deliver the code
‣ Collect feedback

‣ Ensure portability to different platforms?

• Go back to square 1

3

What is programming?

Computer

D A

R

Requirements

Design

ImplementTest

Deploy

page Alessandro TheaISOTDAQ 2020 - Programming for Today’s Physicists and Engineers4

What programming is really like:

Requirements

Design

ImplementTest

Deploy

page Alessandro TheaISOTDAQ 2020 - Programming for Today’s Physicists and Engineers4

What programming is really like:

Requirements

Design

ImplementTest

Deploy

Here is some code
from some dude

• Inherit some code
‣ give it a try to get the hang of it

page Alessandro TheaISOTDAQ 2020 - Programming for Today’s Physicists and Engineers4

What programming is really like:

Requirements

Design

ImplementTest

Deploy

Here is some code
from some dude

Now can you
make it do X?
By tomorrow?

• Inherit some code
‣ give it a try to get the hang of it

• Add some features
‣ the purpose of which is not completely clear

‣ by hack… patching some files

page Alessandro TheaISOTDAQ 2020 - Programming for Today’s Physicists and Engineers4

What programming is really like:

Requirements

Design

ImplementTest

Deploy

Here is some code
from some dude

Now can you
make it do X?
By tomorrow?

Oh Just fix it,
it’s on pc Y

• Inherit some code
‣ give it a try to get the hang of it

• Add some features
‣ the purpose of which is not completely clear

‣ by hack… patching some files

• On the only existing working system
‣ well, it’s the only place where

the code runs, isn’t it?

page Alessandro TheaISOTDAQ 2020 - Programming for Today’s Physicists and Engineers4

What programming is really like:

Requirements

Design

ImplementTest

Deploy

Here is some code
from some dude

Now can you
make it do X?
By tomorrow?

Oh Just fix it,
it’s on pc Y

Hey, who
broke Z?!?

• Inherit some code
‣ give it a try to get the hang of it

• Add some features
‣ the purpose of which is not completely clear

‣ by hack… patching some files

• On the only existing working system
‣ well, it’s the only place where

the code runs, isn’t it?

• Break some other code by accident

‣ Desperately try to figure out why.

page Alessandro TheaISOTDAQ 2020 - Programming for Today’s Physicists and Engineers4

What programming is really like:

Requirements

Design

ImplementTest

Deploy

Here is some code
from some dude

Now can you
make it do X?
By tomorrow?

Oh Just fix it,
it’s on pc Y

Hey, who
broke Z?!?

What did you
 want again?!?

• Inherit some code
‣ give it a try to get the hang of it

• Add some features
‣ the purpose of which is not completely clear

‣ by hack… patching some files

• On the only existing working system
‣ well, it’s the only place where

the code runs, isn’t it?

• Break some other code by accident

‣ Desperately try to figure out why.

• Justo to finally realise you got it wrong in the first place…

page Alessandro TheaISOTDAQ 2020 - Programming for Today’s Physicists and Engineers4

What programming is really like:

Requirements

Design

ImplementTest

Deploy

Here is some code
from some dude

Now can you
make it do X?
By tomorrow?

Oh Just fix it,
it’s on pc Y

Hey, who
broke Z?!?

What did you
 want again?!?

AARGH!!!

• Inherit some code
‣ give it a try to get the hang of it

• Add some features
‣ the purpose of which is not completely clear

‣ by hack… patching some files

• On the only existing working system
‣ well, it’s the only place where

the code runs, isn’t it?

• Break some other code by accident

‣ Desperately try to figure out why.

• Justo to finally realise you got it wrong in the first place…

‣ and so on and so on…

page Alessandro TheaISOTDAQ 2020 - Programming for Today’s Physicists and Engineers5

(some) Typical programming contexts

Requirements

Design

ImplementTest

Deploy

page Alessandro TheaISOTDAQ 2020 - Programming for Today’s Physicists and Engineers5

(some) Typical programming contexts

Requirements

Design

ImplementTest

Deploy

•Small projects

• Shortened dev-cycle: Implement, Test, Deploy
‣ Requirements and design pre-defined

• Mostly self-contained

‣ no/few external interfaces and dependencies

• Few developers (typically you)

page Alessandro TheaISOTDAQ 2020 - Programming for Today’s Physicists and Engineers5

(some) Typical programming contexts

Requirements

Design

ImplementTest

Deploy

•Small projects

• Shortened dev-cycle: Implement, Test, Deploy
‣ Requirements and design pre-defined

• Mostly self-contained

‣ no/few external interfaces and dependencies

• Few developers (typically you)

•Medium projects

• The design effort becomes unavoidable

• Well defined interfaces and dependencies
‣ e.g. external frameworks

• Multiple developers
‣ human interaction becomes non-trivial

page Alessandro TheaISOTDAQ 2020 - Programming for Today’s Physicists and Engineers5

(some) Typical programming contexts

Requirements

Design

ImplementTest

Deploy

•Small projects

• Shortened dev-cycle: Implement, Test, Deploy
‣ Requirements and design pre-defined

• Mostly self-contained

‣ no/few external interfaces and dependencies

• Few developers (typically you)

•Medium projects

• The design effort becomes unavoidable

• Well defined interfaces and dependencies
‣ e.g. external frameworks

• Multiple developers
‣ human interaction becomes non-trivial

• Maintenance issues make their appearance

•Large projects (TDAQ)
• Requirements and specifications become crucial

• Many interfaces, complex dependencies

• Sizeable userbase
‣ Support becomes your worst nightmare

Implementation

Requirements

Design

ImplementTest

Deploy

page Alessandro TheaISOTDAQ 2020 - Programming for Today’s Physicists and Engineers

•Look around for existing solutions
• Many problems have already been solved

• (Sometimes necessary — avoid dependencies)

‣ Do not reject a library because of too many features

• Look for libraries where:

‣ Active community? Well maintained? Tested?

‣ Rule of thumb: Last commit a few days ago, at most over a year old

•Getting to know new frameworks:

• Try the simple tools and then ask for advice

‣ Read the docs (RTFM)

• Investing time in the beginning will pay off

‣ Are there wikis? Has it been asked on StackOverflow?

‣ python packages: try the ipython “help”

7

Do not reinvent the wheel

“Prof. Lucifer Butts and his Self-Operating Napkin”,
by Rube Goldberg

• Start with a simple test

(existing examples -> what you want to do)

‣ Does the code do what you expect?

before looking at external libraries:
Look at the STL / python standard library

page Alessandro TheaISOTDAQ 2020 - Programming for Today’s Physicists and Engineers

•If you do squeeze every-possible-conceivable-feature in one place:

• You’ll probably end up doing nothing right

• Write specialised toolkits / libraries

•Define features by writing a test that needs to be passed

• Only implement what is strictly needed to pass that test.

•Be pragmatic

• Generalising a problem before solving it:

‣ Probably not a good idea

‣ Only do it when you have a use case

• Keep everything as concise as possible (increased readability)

‣ Introduce abstraction only when likely to be actually used

• Keep it simple!

8

When coding - Avoid feature bloating

Don’t reinvent
the wheel

page Alessandro TheaISOTDAQ 2020 - Programming for Today’s Physicists and Engineers

•Whatever you do, you’ll end up using:

• Editor
‣ Know* at least one “omnipresent” editor: nano, vi(m), emacs, etc.

‣ More modern solutions: have a number of clear benefits for development

‣ Depending on the language / platform (e.g. Java): IDEs are the best choice Eclipse, Netbeans

• Terminal

‣ Learn about shortcuts (minimal set: tab, ctrl+r, ctrl+e, ctrl+a … have a look)

‣ Knowing about some basic command line-tools will come in handy

10

Tools of the Trade: Editor and Terminal

* at least know how to save and exit :)
for the more daring: try ed

page Alessandro TheaISOTDAQ 2020 - Programming for Today’s Physicists and Engineers

•The choice of editor is yours to make…1

• Do you want “a great operating system, lacking only a decent editor”

• Or one with two modes: “beep constantly” and “break everything”2

•Both are versatile and learning them is worthwhile

•However: modern alternatives have a less-steep learning-curve

• Some are commercial (Sublime Text, TextMate,…)

• Some are open: github’s Atom & Microsoft’s VSCode

‣ Plugins, git integration, active communities, more plugins…

•Once you decided which one is best for you:

• Spend some time learning about features and keybindings

• Many things that might require dozens of keystrokes can be done with 2 (5 in emacs ;))

• Learn about: Linters, extensibility — look at existing plugins

11

A few words on editors: Choose what suits you and be effective

1. an insightful guide: Text Editors in the Lord of the Rings
2. from the Editor war

vs

Use what you find most comfortable
and learn to be efficient with it

https://www.sublimetext.com/
https://atom.io/
https://code.visualstudio.com/
https://kieranhealy.org/blog/archives/2011/07/29/text-editors-in-the-lord-of-the-rings/
http://en.wikipedia.org/wiki/Editor_war

page Alessandro TheaISOTDAQ 2020 - Programming for Today’s Physicists and Engineers

•At the beginning: clicking is faster than typing, no need for the terminal

• After learning about some command line tools… probably not

• What if you don’t have a GUI?

•Searching files: grep, find — example:
•$ find . -name "*.cc" -exec grep -A 3 "foo" {} +

• Displays all matches of “foo” (+3 lines below) in all .cc files from the current work dir

•Once you learn some tools it becomes very versatile:

• sed, head, tail, sort… awk (a turing-complete interpreted language)

• At the beginning: note down often used commands…

• After a tutorial dump your history* (increase cache size for max usage)

•Shell-scripting:

• Anything you do with the shell can just be dumped in a script

• Alternative: Can solve most things more conveniently with an interpreted language

‣ Con: interpreters / bindings might not always be available

•Eventually: terminal is so versatile that typing beats clicking 9 times out to 10

12

The Terminal - Get used to it

tune your bashrc / bash-profile
see additional material

* dump the last 100 steps:
$ history | tail -n 100 > steps.txt
log the terminal “responses”:
$ script # press ctrl+d to stop

page Alessandro TheaISOTDAQ 2020 - Programming for Today’s Physicists and Engineers

•SSH — very, very versatile, more than you think:

• Tunneling

‣ Secure connections to other machines
‣ Use with VNC to avoid man-in-the-middle vulnerability

• Generate keys for authentication

• Working around bad latency / shaky connection

‣ Always use tmux/screen or a similar terminal multiplexer

‣ Alternative: mosh (mosh.mit.edu)

• mitigates intermittent connectivity, roaming or just moving to

the next meetings…
•SSHFS

• Work locally but have files on remote host

13

Interlude: Working on the road — SSH

SSH tunnel for VNC connection:
ssh -L 5902:<VNCServerIP>5902 <user>@<remote>\
 vncserver :<session> -geometry\
 <width>x<height> -localhost -nolisten tcp

SSH authentication via kerberos token. In ~/.ssh/config:
GSSAPIAuthentication yes
GSSAPIDelegateCredentials yes
HOST lxplus*
 GSSAPITrustDns yes

Lots of things possible with the ssh-config:
HOST <host>
 USER <remote-user>
 ProxyCommand ssh <tunnel> nc <host> <port>

more on (auto-)tunnelling:
https://security.web.cern.ch/security/recommendations/en/
ssh_tunneling.shtml

tmux guides and courses:
https://robots.thoughtbot.com/a-tmux-crash-course
http://www.hamvocke.com/blog/a-quick-and-easy-guide-to-
tmux/

https://mosh.mit.edu/
https://security.web.cern.ch/security/recommendations/en/ssh_tunneling.shtml
https://security.web.cern.ch/security/recommendations/en/ssh_tunneling.shtml
https://robots.thoughtbot.com/a-tmux-crash-course
http://www.hamvocke.com/blog/a-quick-and-easy-guide-to-tmux/
http://www.hamvocke.com/blog/a-quick-and-easy-guide-to-tmux/

page Alessandro TheaISOTDAQ 2020 - Programming for Today’s Physicists and Engineers

•Keep your code as short as possible

while maintaining readability

• Sometimes means to use the right language

• Often quicker / nicer: interpreted languages

‣ python, perl, ruby, tcl, lua

• Used as binding languages:

‣ Performance critical code in C/C++

‣ Instantiated within python

(e.g. in CMS, ATLAS & LHCb offline Software)

‣ Best of both worlds

• Python: large standard library & very expressive!

14

The right tool for many jobs - interpreted languages

from __future__ import print_function
from argparse import ArgumentParser

parser = ArgumentParser(description="Get number of days")
parser.add_argument("month", type=str, nargs='+', help="Name of month")
args = parser.parse_args()

months = {"january": 31, "february": 28, "march": 31,
 "april": 30, "may": 31, "june":30,
 "july": 31, "august": 31, "september": 30,
 "october": 31, "november": 30, "december": 31}

for usermonth in args.month:
 if usermonth in months:
 print("{0} has {1} days.".format(usermonth, months[usermonth]))
 else:
 print("sorry. month '{0}' not known.".format(usermonth))

Keep it
easy to read
Easier to maintain; Easy to re-use

page Alessandro Thea

Interlude:

ISOTDAQ 2020 - Programming for Today’s Physicists and Engineers

> ipython
•In [1]: import array
•In [2]: help (array)

•

16

iPython

page Alessandro Thea

Interlude:

ISOTDAQ 2020 - Programming for Today’s Physicists and Engineers

 ArrayType = class array(__builtin__.object)
 | array(typecode [, initializer]) -> array
 |
 | Return a new array whose items are restricted by typecode, and
 | initialized from the optional initializer value, which must be a list,
 | string or iterable over elements of the appropriate type.
 |
 | Arrays represent basic values and behave very much like lists, except
 | the type of objects stored in them is constrained.
 |
 | Methods:
 |
 | append() -- append a new item to the end of the array
 | buffer_info() -- return information giving the current memory info
 | byteswap() -- byteswap all the items of the array
 | count() -- return number of occurrences of an object
 | extend() -- extend array by appending multiple elements from an iterable
 | fromfile() -- read items from a file object
 | fromlist() -- append items from the list

17

iPython

page Alessandro Thea

Interlude:

ISOTDAQ 2020 - Programming for Today’s Physicists and Engineers

> ipython
•In [1]: import array
•In [2]: help (array)
•In [3]: import ROOT
•In [4]: help (ROOT.TH1D)

•

18

iPython

page Alessandro Thea

Interlude:

ISOTDAQ 2020 - Programming for Today’s Physicists and Engineers

class TH1D(TH1, TArrayD)
 | Method resolution order:
 | TH1D
 | TH1
 | TNamed
 | TObject
 | TAttLine
 | TAttFill
 | TAttMarker
 | TArrayD
 | TArray
 | ObjectProxy
 | __builtin__.object
 |
 | Methods defined here:
 |
 | AddBinContent(self, *args)
 | void TH1D::AddBinContent(int bin)
 | void TH1D::AddBinContent(int bin, double w)

19

iPython

page Alessandro Thea

Interlude:

ISOTDAQ 2020 - Programming for Today’s Physicists and Engineers

> ipython
•In [1]: import array
•In [2]: help (array)
•In [3]: import ROOT
•In [4]: help (ROOT.TH1D)
•In [4]: run myscript.py
•

20

iPython

page Alessandro TheaISOTDAQ 2020 - Programming for Today’s Physicists and Engineers

•Two sides of the same coin: embedded and standalone documentation

• Both necessary to make your programs easy to use

• They have different purpose!

•Embedded documentation:

• Explain interfaces, i.e. function signatures

• Make note of possible future problems (better: prevent them)

• Sometimes might be good to document your reasoning

• Do not “over-comment”

• Clean code: You write it once and you read it many times

•Standalone documentation:
• Again: Explain your interfaces (can be derived from internal, e.g. doxygen.org)

• For large projects: Explain the big picture

‣ Wiki pages with use-cases and examples

‣ Consider using UML (unified modelling language)

21

Documentation: Do it while it’s fresh

if a > b: # when a is greater than b, do...

class TheClass(object):
 """ Documentation of this class. """
 def __init__(self, var):
 self.var_ = var
 ## @var var_
 # my member variable

 ## Documentation of this function.
 # More on what this function does.
 ## @param arg1 an integer argument
 ## @param arg2 a string argument
 ## @returns a list of ...
 def some_function(self, arg1, arg2):
 pass

http://doxygen.org

page Alessandro TheaISOTDAQ 2020 - Programming for Today’s Physicists and Engineers

•Two sides of the same coin: embedded and standalone documentation

• Both necessary to make your programs easy to use

• They have different purpose!

•Embedded documentation:

• Explain interfaces, i.e. function signatures

• Make note of possible future problems (better: prevent them)

• Sometimes might be good to document your reasoning

• Do not “over-comment”

• Clean code: You write it once and you read it many times

•Standalone documentation:
• Again: Explain your interfaces (can be derived from internal, e.g. doxygen.org)

• For large projects: Explain the big picture

‣ Wiki pages with use-cases and examples

‣ Consider using UML (unified modelling language)

21

Documentation: Do it while it’s fresh

if a > b: # when a is greater than b, do...

class TheClass(object):
 """ Documentation of this class. """
 def __init__(self, var):
 self.var_ = var
 ## @var var_
 # my member variable

 ## Documentation of this function.
 # More on what this function does.
 ## @param arg1 an integer argument
 ## @param arg2 a string argument
 ## @returns a list of ...
 def some_function(self, arg1, arg2):
 pass

http://doxygen.org

Document while
coding
You write it once, read it many times

page Alessandro TheaISOTDAQ 2020 - Programming for Today’s Physicists and Engineers

•Makefiles — makes compilation easier and faster
• Makefiles might look complex

• More than one source file: Useful!

‣ Again: Think about yourself in 2 years

• Write your own for a small project

• Automatically allows parallel compilation (option -j)

•Abstraction layer on top: CMake and others

• Might look like overkill; Makes things easier in the long run

‣ CMake is easier to read and better documented

‣ Improved portability

‣ Support different build-systems: ninja, GNU make, …

• At least you should learn how to compile with it

23

Write build scripts to ease your life

“Compiling” by Randall Munroe
xkcd.com

CC=clang++
CCFLAGS=-Wall -pedantic -std=c++14
SOURCES=src/howmanydays.cc
OBJECTS=$(SOURCES:.cc=.o)
EXE=howmanydays

all: $(SOURCES) $(EXE)

$(EXE): $(OBJECTS)
 $(CC) $(CCFLAGS) $(OBJECTS) -o bin/$@

%.o: %.cc
 $(CC) $(CCFLAGS) -c -o $@ $<

.PHONY: clean all
clean:
 rm -f $(OBJECTS) bin/$(EXE)

http://xkcd.com

page Alessandro TheaISOTDAQ 2020 - Programming for Today’s Physicists and Engineers

•While running your code:

• printing to console: only suitable for (very) small code base

• Sooner or later have to use a debugger: gdb (GNU debugger) — better sooner than later

‣ basic commands: run, bt, info <*>, help
‣ very useful trick - attach to a running program: gdb <executive> <pid>

• Python debugger (pdb or rather ipdb*):

•General hints for debugging

• Segmentation violations due to memory management

‣ Life-time vs. scope

‣ Only use raw pointers when you have to!

(I.e. when performance becomes crucial and you know what you’re doing)

‣ Look at smart pointers (part of C++11/14 standards, alternative: boost)

• Even if you don’t have crashes: Memory Leaks. Try valgrind (valgrind.org)

24

Use appropriate tools for debugging

*import ipdb; ipdb.set_trace() # set a breakpoint

http://valgrind.org

page Alessandro TheaISOTDAQ 2020 - Programming for Today’s Physicists and Engineers

•While writing your code:

• There are static code analysis tools that can help you

• Try out a linter for your preferred editor

(e.g. atom: https://atom.io/packages/linter)

‣ Highlights potentially problematic code

‣ Your code will be more reliable

•Static checking at compile time:

• Clang has a nice suite of static checks implemented

http://clang-analyzer.llvm.org

‣ Can also enforce coding styles

• Takes longer than compiling; HTML reports with possible bugs

• Might flag some false-positives

•Static code checking helps you avoid problems!

25

Static Code Checking

https://atom.io/packages/atom-lint
http://clang-analyzer.llvm.org

page Alessandro TheaISOTDAQ 2020 - Programming for Today’s Physicists and Engineers

•Don’t underestimate the challenge of tracking your code

• Deceitfully simple at the beginning…

‣ e.g.: zip/tar-based backups, versioning and distribution

• but the illusion shatters soon enough

‣ upgrading tools or library, refactoring, rushing-in a patch

‣ “long-range” bugs are a thing, not always immediate to

catch

•Get familiar with Revision Control early

• Learn to track (and comment) every code change
• RCS Essential (and unavoidable) for collaboration

26

Always track code changes - Revision Control

https://jwiegley.github.io/git-from-the-bottom-up/

page Alessandro TheaISOTDAQ 2020 - Programming for Today’s Physicists and Engineers

•Once upon a time: CVS and Subversion [“CVS done right”]*

•Nowadays: Distributed revision control - Great for personal use

• Easy to work on the go

• Your local copy has everything (including history)

•The most popular nowadays git: git-scm.com

[“there is no way to do CVS right”]*

• Other distributed solutions are: Mercurial, bazaar…

• Easy to get started…

27

Revision Control Software

* paraphrasing Linus Torvalds

Repo-To-Repo Collaboration

Git repo

Git repo Git repo

Central-To-Working-Copy Collaboration

SVN repo

Working Copy Working Copy

http://git-scm.com

page Alessandro Thea

Interlude:

ISOTDAQ 2020 - Programming for Today’s Physicists and Engineers

> git init
•Initialized empty Git repository in /TestDirectory/.git/

•

28

git basics

page Alessandro Thea

Interlude:

ISOTDAQ 2020 - Programming for Today’s Physicists and Engineers

> git init
•Initialized empty Git repository in /TestDirectory/.git/
> vim README.md
•skipping this part.

•

29

git basics

page Alessandro Thea

Interlude:

ISOTDAQ 2020 - Programming for Today’s Physicists and Engineers

> git init
•Initialized empty Git repository in /TestDirectory/.git/
> vim README.md
•skipping this part.
> git add README.md

•

30

git basics

page Alessandro Thea

Interlude:

ISOTDAQ 2020 - Programming for Today’s Physicists and Engineers

> git init
•Initialized empty Git repository in /TestDirectory/.git/
> vim README.md
•skipping this part.
> git add README.md
> git commit -m “Initial commit of readme.”

•

31

git basics

Random github commit messages:
http://whatthecommit.com/

http://whatthecommit.com/

page Alessandro TheaISOTDAQ 2020 - Programming for Today’s Physicists and Engineers

•Learn basic concepts and commands

• Create repository, add file, commit new versions and retrieve: git init, add,

commit, checkout

•Familiarise with parallel development concepts

• Branching, merging, rebasing: git branch, merge, rebase

•Learn how to interact with remote repositories and users

• Retrieve and share code: git clone, pull, push, fetch

•Not always intuitive

• That’s because code management is a hard problem to solve

• Worth investing a bit of time reading about it*

32

Git - in a nutshell

*Ultimate git guide: https://jwiegley.github.io/git-from-the-bottom-up/

Git tutorials:
http://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
http://pcottle.github.io/learnGitBranching/

https://jwiegley.github.io/git-from-the-bottom-up/
http://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
http://pcottle.github.io/learnGitBranching/

page Alessandro TheaISOTDAQ 2020 - Programming for Today’s Physicists and Engineers

•Create your own .gitconfig to get the most out of git

• Colors, aliases, etc…

• Special mention: graphical history
‣ a lifesaver when working with many branches/

developers

•Integrate git with your shell

• Tab-completion and git information shell prompt

‣ Reduce the risk

33

Git - there’s more than meets the eye

Magic alias (one of many):
[alias]
 lg = log --color --graph --all --pretty=format:'%Cred%h%Creset -%C(yellow)%d%Creset %s %Cgreen(%cr) %C(bold blue)<%an>%Creset' --abbrev-commit

Git bash shell integration:
https://git-scm.com/book/en/v2/Appendix-A%3A-Git-in-Other-Environments-Git-in-Bash

Git configuration: https://git-scm.com/docs/git-config

https://git-scm.com/book/en/v2/Appendix-A%3A-Git-in-Other-Environments-Git-in-Bash
https://git-scm.com/docs/git-config

Testing

Requirements

Design

ImplementTest

Deploy

page Alessandro TheaISOTDAQ 2020 - Programming for Today’s Physicists and Engineers

UNIT TEST

Function F

Input

Result

•Different tests, different purposes:

• Unit test
‣ Testing “units of code”, e.g. a function or class
‣ Given a defined input => expected output?

• Integration test
‣ Testing a larger part of your software

‣ For example running an example and checking output

•Do not mix it up with verification
‣ Checking if specifications are met

35

What do we mean with tests?

INTEGRATION TEST

Function GFunction F

Sanitizer

Input

Post-Process

Result

page Alessandro TheaISOTDAQ 2020 - Programming for Today’s Physicists and Engineers

•How to come up with tests?

• What should the algorithm do?

‣ Check if well defined input produces correct result

• How should the algorithm fail?

‣ Check if wrong input fails in the way you want
•You’ll probably miss corner cases

• Once you discover them, implement a test!

‣ Only let a bug hit you once

• Have beta-testers / users help you

‣ Use issue tracker

‣ Be responsive!
•Look at existing solutions to implement tests

• Python: doctest and unittest packages

• C++: CTest (integrated with cmake) & Catch

36

Writing good tests is hard

Tests needed
to find bugs

Tests needed
for coverage

https://docs.python.org/3.6/library/doctest.html
https://docs.python.org/3.6/library/unittest.html
https://cmake.org/Wiki/CMake/Testing_With_CTest
https://github.com/philsquared/Catch

page Alessandro Thea

Interlude:

ISOTDAQ 2020 - Programming for Today’s Physicists and Engineers

> python testfib.py

•

37

doctest

def fib(n):
 """ Returns the fibonacci series at n
 >>> [fib(n) for n in range(6)]
 [0, 1, 1, 2, 3, 5]
 >>> fib(-1)
 Traceback (most recent call last):
 ...
 ValueError: n should be >= 0
 """
 if n < 0: raise ValueError("n should be >= 0")
 if n == 0: return 0
 a, b = 1, 1
 for i in range(n-1):
 a, b = b, a+b
 return a

import doctest
doctest.testmod()

page Alessandro Thea

Interlude:

ISOTDAQ 2020 - Programming for Today’s Physicists and Engineers

> python testfib.py
>

•

38

doctest

def fib(n):
 """ Returns the fibonacci series at n
 >>> [fib(n) for n in range(6)]
 [0, 1, 1, 2, 3, 5]
 >>> fib(-1)
 Traceback (most recent call last):
 ...
 ValueError: n should be >= 0
 """
 if n < 0: raise ValueError("n should be >= 0")
 if n == 0: return 0
 a, b = 1, 1
 for i in range(n-1):
 a, b = b, a+b
 return a

import doctest
doctest.testmod()

page Alessandro Thea

Interlude:

ISOTDAQ 2020 - Programming for Today’s Physicists and Engineers

> python testfib.py -v

•

39

doctest

def fib(n):
 """ Returns the fibonacci series at n
 >>> [fib(n) for n in range(6)]
 [0, 1, 1, 2, 3, 5]
 >>> fib(-1)
 Traceback (most recent call last):
 ...
 ValueError: n should be >= 0
 """
 if n < 0: raise ValueError("n should be >= 0")
 if n == 0: return 0
 a, b = 1, 1
 for i in range(n-1):
 a, b = b, a+b
 return a

import doctest
doctest.testmod()

page Alessandro Thea

Interlude:

ISOTDAQ 2020 - Programming for Today’s Physicists and Engineers

> python testfib.py -v
> Trying:
> [fib(n) for n in range(6)]
> Expecting:
> [0, 1, 1, 2, 3, 5]
> ok
> Trying:
> fib(-1)
> Expecting:
> Traceback (most recent call last):
> ...
> ValueError: n should be >= 0
> ok
•

40

doctest

def fib(n):
 """ Returns the fibonacci series at n
 >>> [fib(n) for n in range(6)]
 [0, 1, 1, 2, 3, 5]
 >>> fib(-1)
 Traceback (most recent call last):
 ...
 ValueError: n should be >= 0
 """
 if n < 0: raise ValueError("n should be >= 0")
 if n == 0: return 0
 a, b = 1, 1
 for i in range(n-1):
 a, b = b, a+b
 return a

import doctest
doctest.testmod()

Test your
software
and not just in production!

Deploying your software

Requirements

Design

ImplementTest

Deploy

page Alessandro TheaISOTDAQ 2020 - Programming for Today’s Physicists and Engineers

•When you release your software:

• Tag the repository

‣ Ensure everyone has the same code

• Test in the target environment

‣ Fresh virtual machine

• Accompanying documentation

‣ Produce Doxygen pages

‣ Update wikis (new version)

‣ Make sure all examples work

•Ideal case: All this is done for every commit!

43

Releasing the Software

✓
✓

page Alessandro TheaISOTDAQ 2020 - Programming for Today’s Physicists and Engineers

•Working in groups on software can be hard:

• Somebody changes something: Other code breaks

• Avoid such nuisances by testing regularly!

•New contribution to the code base:

• Check everything works

‣ Can do this by hand… Tedious

‣ Better: Automate it.

•Many solutions exist that automatically test things:

• Check compilation

• Check all defined test cases

• Write nice summaries

44

Continuous integration

Gitlab CI - https://about.gitlab.com/features/gitlab-ci-cd/

Travis CI - https://travis-ci.org

https://about.gitlab.com/features/gitlab-ci-cd/
https://travis-ci.org

Requirements

Requirements

Design

ImplementTest

Deploy

page Alessandro TheaISOTDAQ 2020 - Programming for Today’s Physicists and Engineers

stable

machine learning

GPU programming

The answer depends:
- Analysis?
- DAQ / Trigger?
- External conditions?

- Can you choose?

46

Choosing the programming language

Data serialization

page Alessandro TheaISOTDAQ 2020 - Programming for Today’s Physicists and Engineers

Choose wisely
- Favour documentation and

support over features
- Favour large user-bases

47

Choosing the programming language

Do you really
have to program?
Or has somebody already done it for you?

Design

Requirements

Design

ImplementTest

Deploy

page Alessandro TheaISOTDAQ 2020 - Programming for Today’s Physicists and Engineers

•Unified Modelling Language: sketch a design

• Probably everyone has seen structure diagrams

‣ Relationships of classes (or larger components)

• Behaviour diagrams

‣ What does the user do and what should be the result?

• Interaction diagrams

‣ How does data and control flow?

•Forces you to be concrete!

50

UML Diagrams

ImplementationInterface

Member
Related
Class

Order

Prepare
Food

Serve

Eat

CUSTOMER STAFF

to make them, look at draw.io or lucidchart.com

https://www.draw.io/
https://www.lucidchart.com/

page Alessandro TheaISOTDAQ 2020 - Programming for Today’s Physicists and Engineers

•Maintainability
• Is it easy to adapt to changed environment?

• Can you cope with (slightly) changed requirements?

•Scalability
• Large data volumes

‣ Think about data-flow and data layout

‣ Try to avoid complicated data structures

•Re-usability
• Identify parts of the design that could be used elsewhere

• Could these be extracted in a dedicated library?

51

Things to keep in mind when designing

Requirements

Design

ImplementTest

Deploy

Collaborative programming

collaborative work

page Alessandro TheaISOTDAQ 2020 - Programming for Today’s Physicists and Engineers

•Developing software efficiently:

• Avoid duplication of work

• Avoid feature bloating

• Ensure code quality

• Deliver code timely

•Many approaches to accomplish this:

• Examples: Iterative and Test-Driven Development

•Similar principles, different focus

• on team management (agile development)

• on actual programming style (lean development / TDD)

• broad guidelines to deliver (iterative development)

53

Development Cycles

Iterative Development

Test-Driven Development

Requirements

Design

ImplementTest

Deploy

Requirements

Design

Implement Test

Deploy

page Alessandro TheaISOTDAQ 2020 - Programming for Today’s Physicists and Engineers

•Sometimes git command line is just not enough

• Multiple developers, many branches, parallel developments

• Non-trivial merge conflicts

• Even mid-sized project become hard to navigate

•Git GUIs can make a significant different when in trouble

• SourceTree, Git-Kracken, Sublime Merge, Git Up

‣

54

Git & collaborative programming

page Alessandro TheaISOTDAQ 2020 - Programming for Today’s Physicists and Engineers55

Example : Sublime Merge - repository overview

page Alessandro TheaISOTDAQ 2020 - Programming for Today’s Physicists and Engineers56

Another example : Git Up - focus on branch structure

page Alessandro TheaISOTDAQ 2020 - Programming for Today’s Physicists and Engineers

•Sometimes git command line is just not enough

• Multiple developers, many branches, parallel developments

• Non-trivial merge conflicts

• Even mid-sized project become hard to navigate

•GUIs can make a significant different when in trouble

• SourceTree, Git-Kracken, Sublime Merge, Git Up

• Like with editors, find what is best for you
‣ takes time, but it’s worth the effort

57

Git & collaborative programming

page Alessandro TheaISOTDAQ 2020 - Programming for Today’s Physicists and Engineers

•Large projects can be trying for some editors

• and for you

• large codebase, files, folders, branches, tags, etc…

• Your favourite vintage editor may just not be up to the job

•Modern editors offer non-negligible advantages

• Modern GUIs, flexible plugin system, large user community

• Syntax highlighting, Integration with VCS', preview,

terminal integration and more

•

58

Reprise: Text editors

page Alessandro TheaISOTDAQ 2020 - Programming for Today’s Physicists and Engineers59

Text Editors++: Visual Studio Code

page Alessandro TheaISOTDAQ 2020 - Programming for Today’s Physicists and Engineers60

Text Editors++: Visual Studio Code

page Alessandro TheaISOTDAQ 2020 - Programming for Today’s Physicists and Engineers61

Text Editors++: Visual Studio Code

page Alessandro TheaISOTDAQ 2020 - Programming for Today’s Physicists and Engineers62

Text Editors++: Visual Studio Code

page Alessandro TheaISOTDAQ 2020 - Programming for Today’s Physicists and Engineers

•Easy to host & share your projects:

• Setting up a shared repo can be done via any cloud service, e.g. dropbox

• Many open-source hosting sites, biggest: github.com

• Not open to public but CERN users: GitLab.cern.ch

‣ Both include fairly usable issue-tracking

• The beauty of pull-requests*:

‣ Do builds on pull-requests (combine with CI)

‣ Review contributed code on pull-requests

•Git is widely used — de-facto community standard

• Exception: Python uses Mercurial

•
•The more you learn the more you’ll like it!

63

The git ecosystem

+

* merge-request in GitLab

|

http://github.com
http://gitlab.cern.ch

page Alessandro TheaISOTDAQ 2020 - Programming for Today’s Physicists and Engineers

•Easy to host & share your projects:

• Setting up a shared repo can be done via any cloud service, e.g. dropbox

• Many open-source hosting sites, biggest: github.com

• Not open to public but CERN users: GitLab.cern.ch

‣ Both include fairly usable issue-tracking

• The beauty of pull-requests*:

‣ Do builds on pull-requests (combine with CI)

‣ Review contributed code on pull-requests

•Git is widely used — de-facto community standard

• Exception: Python uses Mercurial

•
•The more you learn the more you’ll like it!

63

The git ecosystem

+

* merge-request in GitLab

|

=
💛

http://github.com
http://gitlab.cern.ch

Use the right tools
for the job
Look around, you won’t regret it

General Tips & Pointers

page Alessandro TheaISOTDAQ 2020 - Programming for Today’s Physicists and Engineers

•Coursera — courses by universities (Caltech, Johns Hopkins, Stanford and more)

• https://www.coursera.org/courses

• Large variety of courses
‣ Not only technology / programming

‣ Also physics, biology, economics… and more

‣ Also in different languages
•Udacity — courses from industry (Google, Intel, Autodesk)

• https://www.udacity.com/courses#!/all

‣ Mixed courses: Some free, recently switched to a payed model with monthly fees
•University Homepages — have a gander… many courses available through YouTube etc.

• e.g.: Programming Paradigms, Stanford University

•http://ureddit.com/ — University of Reddit

66

Learning about software development

https://www.coursera.org/courses
https://www.udacity.com/courses#!/all
https://www.youtube.com/watch?v=Ps8jOj7diA0&feature=PlayList&p=9D558D49CA734A02&index=0
http://ureddit.com/

page Alessandro TheaISOTDAQ 2020 - Programming for Today’s Physicists and Engineers

•Before you write trigger / DAQ software (and firmware!), you should know the ins and outs:

• What is: compiler, interpreter, linker, terminal, object, class, pointer, reference

• If these concepts are not clear: Excellent material on the web (previous slide)

•Before (and while) implementing: Think

• Smart solutions can take significant amount of time…

put it on the back-burner if you have other things to work on

•Read! Ask! Write! The internet is full of information… Blogs, tutorials, StackOverflow,

also Wikipedia can be very useful to get a grasp of new concepts

67

Closing Advice

page Alessandro TheaISOTDAQ 2020 - Programming for Today’s Physicists and Engineers

•These slides were full of starting points: You have to follow up to get something out of it

• Most of it are tools to make your life easier

‣ Bonus: If you know them you’ll have an easier time to follow nerd-talk

• Nothing is free

‣ You’ll have to invest some effort to learn

‣ If you do that this week: We’ll be here to help!

•Homework:

• Install git, start a repository. Try branching on the web

• Run tmux, kill the connection, reconnect and see if you can continue where you left off

• Tune your .bashrc / .bash_profile to get a more useful prompt

• Try out vim / emacs / atom / vscode and learn what suits you best

‣ Download a shortcut summary…

‣ Learn how to block-select, indent multiple lines, rename occurrences of text

68

Conclusion

Master by
doing
Don’t forget: Have fun while doing so!

page Alessandro TheaISOTDAQ 2020 - Programming for Today’s Physicists and Engineers70

Random Things

6 Stages of Debugging:
1.That can’t happen.
2.That doesn’t happen on my machine.
3.That shouldn’t happen.
4.Why does that happen?
5.Oh, I see.
6.How did that ever work?

— http://plasmasturm.org/log/6debug/

“Debugging is like being the
detective in a crime novel where
you are also the murderer.”

— @fortes

Guru of the Week: (Not any more)
regular C++ programming problems
with solutions by Herb Sutter
http://www.gotw.ca/gotw/

Go-language: Designed with threading in mind
http://tour.golang.org/welcome/1

2014 lecture has complementary stuff:
http://indico.cern.ch/event/274473/session/21/material/0/0.pdf

About JavaScript:
https://www.destroyallsoftware.com/talks/the-birth-and-death-of-javascript
https://www.destroyallsoftware.com/talks/wat Want to try your programming skills?

Google code jam (registration open):
codingcompetitions.withgoogle.com/codejam
Also you can just practice
by solving nice problems.

http://plasmasturm.org/log/6debug/
http://www.gotw.ca/gotw/
http://tour.golang.org/welcome/1
http://indico.cern.ch/event/274473/session/21/material/0/0.pdf
https://www.destroyallsoftware.com/talks/the-birth-and-death-of-javascript
https://www.destroyallsoftware.com/talks/wat
http://codingcompetitions.withgoogle.com/codejam

More Random Things

page Alessandro TheaISOTDAQ 2020 - Programming for Today’s Physicists and Engineers

•In HEP probably no way around ROOT / RooFit

• Maintained at CERN, used in LHC experiments

•GNU R — www.r-project.org

• Used widely among statisticians (including finance and others)

• Interpreted language + software for analysis and graphical representation

• ROOT bindings now available (use it through TMVA)

•SciPy — http://www.scipy.org/

• Collection of python libraries for numerical computations, graphical representation and containing additional data structures

•Sci-kitlearn: — http://scikit-learn.org/stable/

• Python library for machine learning

• ROOT bindings available (usable through TMVA)

72

http://www.r-project.org
http://www.scipy.org/
http://scikit-learn.org/stable/

page Alessandro TheaISOTDAQ 2020 - Programming for Today’s Physicists and Engineers

•Data visualisation:
•Matplotlib (part of SciPy)

• histograms, power spectra, scatterplots and more.. extensive library for 2D/3D plotting

•ROOT

• Again, probably no way around it… Sometimes a little unintuitive

•Other:
•JaxoDraw — http://jaxodraw.sourceforge.net/

• Feynman graphs through “axodraw” latex package

•tex2im — http://www.nought.de/tex2im.php

• Need formulas in your favourite WYSIWG presentation tool?

•GraphViz — http://www.graphviz.org/ or MacOS: http://www.pixelglow.com/graphviz/

• Diagrams / Flowcharts with auto-layout

73

http://jaxodraw.sourceforge.net/
http://www.nought.de/tex2im.php
http://www.graphviz.org/
http://www.pixelglow.com/graphviz/

page Alessandro TheaISOTDAQ 2020 - Programming for Today’s Physicists and Engineers

•SAGE — www.sagemath.org

• Open source alternative to Matlab, Maple and Mathematica

•GNUPlot — http://www.gnuplot.info/

• Quick graphing and data visualisation

•Wolfram Alpha — http://www.wolframalpha.com/

• Wolfram = Makers of Mathematica.. A… ask me anything?:
‣ http://www.wolframalpha.com/input/?i=how+much+does+a+goat+weigh

‣ Answer: Assuming “goat” is a species specification. Result: 61 kg

74

http://www.sagemath.org
http://www.gnuplot.info/
http://www.wolframalpha.com/
http://www.wolframalpha.com/input/?i=how+much+does+a+goat+weigh

