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•Disclaimer: This is more a collection of pointers* than a tutorial, it’s a starting point…  
•(Almost) no code but a bias towards C++ and Python 

•Note: While the lecture focus is software, most of the content equally applies to firmware programming. 

•

2

Opening words

Acknowledgment: Slides are based on previous lectures by Joschka Poettgen (Lingemann) and  
Erkcan Ozcan

*further reading and tips in 
these boxes
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• Understand & define the problem to solve

‣ Define the requirements for your software
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• Understand & define the problem to solve

‣ Define the requirements for your software

• Formulate a possible solution (design)
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• Understand & define the problem to solve

‣ Define the requirements for your software

• Formulate a possible solution (design)

‣ Identify key functionalities and features

• Implement the design
‣ Choose the language

‣ Write code, debug it
‣ Prepare documentation
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• Understand & define the problem to solve

‣ Define the requirements for your software

• Formulate a possible solution (design)

‣ Identify key functionalities and features

• Implement the design
‣ Choose the language

‣ Write code, debug it
‣ Prepare documentation

• Validate the code

‣ Perform thorough verification
‣ Execute unit and system tests

• Deliver the code
‣ Collect feedback

‣ Ensure portability to different platforms?

• Go back to square 1
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‣ by hack… patching some files

• On the only existing working system
‣ well, it’s the only place where  

the code runs, isn’t it?
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• Break some other code by accident
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• Inherit some code
‣ give it a try to get the hang of it

• Add some features
‣ the purpose of which is not completely clear

‣ by hack… patching some files

• On the only existing working system
‣ well, it’s the only place where  

the code runs, isn’t it?

• Break some other code by accident

‣ Desperately try to figure out why.

• Justo to finally realise you got it wrong in the first place…
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What programming is really like:

Requirements

Design

ImplementTest

Deploy

Here is some code 
from some dude

Now can you 
make it do X? 
By tomorrow?

Oh Just fix it, 
it’s on pc Y

Hey, who  
broke Z?!?

What did you 
 want again?!?

AARGH!!!

• Inherit some code
‣ give it a try to get the hang of it

• Add some features
‣ the purpose of which is not completely clear

‣ by hack… patching some files

• On the only existing working system
‣ well, it’s the only place where  

the code runs, isn’t it?

• Break some other code by accident

‣ Desperately try to figure out why.

• Justo to finally realise you got it wrong in the first place…

‣ and so on and so on…
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(some) Typical programming contexts

Requirements

Design

ImplementTest

Deploy

•Small projects

• Shortened dev-cycle: Implement, Test, Deploy
‣ Requirements and design pre-defined

• Mostly self-contained

‣ no/few external interfaces and dependencies

• Few developers (typically you)

•Medium projects

• The design effort becomes unavoidable

• Well defined interfaces and dependencies
‣ e.g. external frameworks

• Multiple developers
‣ human interaction becomes non-trivial

• Maintenance issues make their appearance

•Large projects (TDAQ)
• Requirements and specifications become crucial

• Many interfaces, complex dependencies

• Sizeable userbase
‣ Support becomes your worst nightmare
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•Look around for existing solutions 
• Many problems have already been solved 

• (Sometimes necessary — avoid dependencies) 

‣ Do not reject a library because of too many features 

• Look for libraries where:  

‣ Active community? Well maintained? Tested? 

‣ Rule of thumb: Last commit a few days ago, at most over a year old 

•Getting to know new frameworks: 

• Try the simple tools and then ask for advice 

‣ Read the docs (RTFM) 

• Investing time in the beginning will pay off 

‣ Are there wikis? Has it been asked on StackOverflow? 

‣ python packages: try the ipython “help”

7

Do not reinvent the wheel

“Prof. Lucifer Butts and his Self-Operating Napkin”,  
by Rube Goldberg

• Start with a simple test  

(existing examples -> what you want to do) 

‣ Does the code do what you expect?

before looking at external libraries: 
Look at the STL / python standard library
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•If you do squeeze every-possible-conceivable-feature in one place: 

• You’ll probably end up doing nothing right 

• Write specialised toolkits / libraries 

•Define features by writing a test that needs to be passed 

• Only implement what is strictly needed to pass that test. 

•Be pragmatic 

• Generalising a problem before solving it:  

‣ Probably not a good idea 

‣ Only do it when you have a use case 

• Keep everything as concise as possible (increased readability) 

‣ Introduce abstraction only when likely to be actually used 

• Keep it simple!

8

When coding - Avoid feature bloating



Don’t reinvent 
the wheel
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•Whatever you do, you’ll end up using: 

• Editor 
‣ Know* at least one “omnipresent” editor: nano, vi(m), emacs, etc. 

‣ More modern solutions: have a number of clear benefits for development 

‣ Depending on the language / platform (e.g. Java): IDEs are the best choice Eclipse, Netbeans 

• Terminal 

‣ Learn about shortcuts (minimal set: tab, ctrl+r, ctrl+e, ctrl+a … have a look) 

‣ Knowing about some basic command line-tools will come in handy

10

Tools of the Trade: Editor and Terminal

* at least know how to save and exit :) 
for the more daring: try ed
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•The choice of editor is yours to make…1 

• Do you want “a great operating system, lacking only a decent editor” 

• Or one with two modes: “beep constantly” and “break everything”2 

•Both are versatile and learning them is worthwhile 

•However: modern alternatives have a less-steep learning-curve 

• Some are commercial (Sublime Text, TextMate,…) 

• Some are open: github’s Atom & Microsoft’s VSCode  

‣ Plugins, git integration, active communities, more plugins…  

•Once you decided which one is best for you: 

• Spend some time learning about features and keybindings 

• Many things that might require dozens of keystrokes can be done with 2 (5 in emacs ;)) 

• Learn about: Linters, extensibility — look at existing plugins

11

A few words on editors: Choose what suits you and be effective

1. an insightful guide:  Text Editors in  the Lord of the Rings 
2. from the Editor war

vs

Use what you find most comfortable  
and learn to be efficient with it

https://www.sublimetext.com/
https://atom.io/
https://code.visualstudio.com/
https://kieranhealy.org/blog/archives/2011/07/29/text-editors-in-the-lord-of-the-rings/
http://en.wikipedia.org/wiki/Editor_war
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•At the beginning: clicking is faster than typing, no need for the terminal 

• After learning about some command line tools… probably not 

• What if you don’t have a GUI? 

•Searching files: grep, find — example: 
•$ find . -name "*.cc" -exec grep -A 3 "foo" {} + 

• Displays all matches of “foo” (+3 lines below) in all .cc files from the current work dir 

•Once you learn some tools it becomes very versatile: 

• sed, head, tail, sort… awk (a turing-complete interpreted language) 

• At the beginning: note down often used commands… 

• After a tutorial dump your history* (increase cache size for max usage) 

•Shell-scripting:  

• Anything you do with the shell can just be dumped in a script 

• Alternative: Can solve most things more conveniently with an interpreted language 

‣ Con: interpreters / bindings might not always be available 

•Eventually: terminal is so versatile that typing beats clicking 9 times out to 10

12

The Terminal - Get used to it

tune your bashrc / bash-profile 
see additional material

* dump the last 100 steps: 
$ history | tail -n 100 > steps.txt 
log the terminal “responses”: 
$ script # press ctrl+d to stop
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•SSH — very, very versatile, more than you think: 

• Tunneling 

‣ Secure connections to other machines 
‣ Use with VNC to avoid man-in-the-middle vulnerability  

• Generate keys for authentication 

• Working around bad latency / shaky connection 

‣ Always use tmux/screen or a similar terminal multiplexer 

‣ Alternative: mosh  (mosh.mit.edu)  

• mitigates intermittent connectivity, roaming or just moving to 

the next meetings… 
•SSHFS 

• Work locally but have files on remote host

13

Interlude: Working on the road — SSH

SSH tunnel for VNC connection: 
ssh -L 5902:<VNCServerIP>5902 <user>@<remote>\ 
   vncserver :<session> -geometry\  
   <width>x<height> -localhost -nolisten tcp

SSH authentication via kerberos token. In ~/.ssh/config: 
GSSAPIAuthentication yes 
GSSAPIDelegateCredentials yes 
HOST lxplus* 
    GSSAPITrustDns yes

Lots of things possible with the ssh-config: 
HOST <host> 
    USER <remote-user> 
    ProxyCommand ssh <tunnel> nc <host> <port>

more on (auto-)tunnelling:  
https://security.web.cern.ch/security/recommendations/en/
ssh_tunneling.shtml

tmux guides and courses: 
https://robots.thoughtbot.com/a-tmux-crash-course 
http://www.hamvocke.com/blog/a-quick-and-easy-guide-to-
tmux/

https://mosh.mit.edu/
https://security.web.cern.ch/security/recommendations/en/ssh_tunneling.shtml
https://security.web.cern.ch/security/recommendations/en/ssh_tunneling.shtml
https://robots.thoughtbot.com/a-tmux-crash-course
http://www.hamvocke.com/blog/a-quick-and-easy-guide-to-tmux/
http://www.hamvocke.com/blog/a-quick-and-easy-guide-to-tmux/
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•Keep your code as short as possible  

while maintaining readability 

• Sometimes means to use the right language 

• Often quicker / nicer: interpreted languages  

‣ python, perl, ruby, tcl, lua 

• Used as binding languages:  

‣ Performance critical code in C/C++  

‣ Instantiated within python  

(e.g. in CMS, ATLAS & LHCb offline Software)   

‣ Best of both worlds 

• Python: large standard library & very expressive!

14

The right tool for many jobs - interpreted languages

from __future__ import print_function 
from argparse import ArgumentParser 

parser = ArgumentParser(description="Get number of days") 
parser.add_argument("month", type=str, nargs='+', help="Name of month") 
args = parser.parse_args() 

months = {"january": 31, "february": 28, "march": 31, 
          "april": 30, "may": 31, "june":30, 
          "july": 31, "august": 31, "september": 30, 
          "october": 31, "november": 30, "december": 31} 

for usermonth in args.month: 
    if usermonth in months: 
        print("{0} has {1} days.".format(usermonth, months[usermonth])) 
    else: 
        print("sorry. month '{0}' not known.".format(usermonth)) 



Keep it 
easy to read
Easier to maintain; Easy to re-use
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> ipython 
•In [1]: import array 
•In [2]: help (array) 

•

16

iPython
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    ArrayType = class array(__builtin__.object) 
     |  array(typecode [, initializer]) -> array 
     |   
     |  Return a new array whose items are restricted by typecode, and 
     |  initialized from the optional initializer value, which must be a list, 
     |  string or iterable over elements of the appropriate type. 
     |   
     |  Arrays represent basic values and behave very much like lists, except 
     |  the type of objects stored in them is constrained. 
     |   
     |  Methods: 
     |   
     |  append() -- append a new item to the end of the array 
     |  buffer_info() -- return information giving the current memory info 
     |  byteswap() -- byteswap all the items of the array 
     |  count() -- return number of occurrences of an object 
     |  extend() -- extend array by appending multiple elements from an iterable 
     |  fromfile() -- read items from a file object 
     |  fromlist() -- append items from the list

17

iPython
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> ipython 
•In [1]: import array 
•In [2]: help (array) 
•In [3]: import ROOT 
•In [4]: help (ROOT.TH1D) 

•
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iPython
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class TH1D(TH1, TArrayD) 
 |  Method resolution order: 
 |      TH1D 
 |      TH1 
 |      TNamed 
 |      TObject 
 |      TAttLine 
 |      TAttFill 
 |      TAttMarker 
 |      TArrayD 
 |      TArray 
 |      ObjectProxy 
 |      __builtin__.object 
 |   
 |  Methods defined here: 
 |   
 |  AddBinContent(self, *args) 
 |      void TH1D::AddBinContent(int bin) 
 |      void TH1D::AddBinContent(int bin, double w)

19

iPython
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> ipython 
•In [1]: import array 
•In [2]: help (array) 
•In [3]: import ROOT 
•In [4]: help (ROOT.TH1D) 
•In [4]: run myscript.py 
•

20

iPython
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•Two sides of the same coin: embedded and standalone documentation 

• Both necessary to make your programs easy to use 

• They have different purpose! 

•Embedded documentation: 

• Explain interfaces, i.e. function signatures 

• Make note of possible future problems (better: prevent them) 

• Sometimes might be good to document your reasoning 

• Do not “over-comment” 

• Clean code: You write it once and you read it many times 

•Standalone documentation: 
• Again: Explain your interfaces (can be derived from internal, e.g. doxygen.org) 

• For large projects: Explain the big picture 

‣ Wiki pages with use-cases and examples 

‣ Consider using UML (unified modelling language)

21

Documentation: Do it while it’s fresh

if a > b: # when a is greater than b, do...

class TheClass(object): 
    """ Documentation of this class. """ 
    def __init__(self, var): 
        self.var_ = var 
    ## @var var_ 
    # my member variable 

    ## Documentation of this function. 
    # More on what this function does. 
    ## @param arg1 an integer argument 
    ## @param arg2 a string argument 
    ## @returns a list of ... 
    def some_function(self, arg1, arg2): 
        pass

http://doxygen.org
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Document while 
coding
You write it once, read it many times
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•Makefiles — makes compilation easier and faster 
• Makefiles might look complex  

• More than one source file: Useful! 

‣ Again: Think about yourself in 2 years 

• Write your own for a small project 

• Automatically allows parallel compilation (option -j) 

•Abstraction layer on top: CMake and others 

• Might look like overkill; Makes things easier in the long run 

‣ CMake is easier to read and better documented 

‣ Improved portability 

‣ Support different build-systems: ninja, GNU make, … 

• At least you should learn how to compile with it

23

Write build scripts to ease your life

“Compiling” by Randall Munroe 
xkcd.com

CC=clang++ 
CCFLAGS=-Wall -pedantic -std=c++14 
SOURCES=src/howmanydays.cc 
OBJECTS=$(SOURCES:.cc=.o) 
EXE=howmanydays 

all: $(SOURCES) $(EXE) 

$(EXE): $(OBJECTS) 
 $(CC) $(CCFLAGS) $(OBJECTS) -o bin/$@ 

%.o: %.cc 
 $(CC) $(CCFLAGS) -c -o $@ $< 

.PHONY: clean all 
clean: 
 rm -f $(OBJECTS) bin/$(EXE) 

http://xkcd.com
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•While running your code: 

• printing to console: only suitable for (very) small code base 

• Sooner or later have to use a debugger: gdb (GNU debugger) — better sooner than later 

‣ basic commands: run, bt, info <*>, help 
‣ very useful trick - attach to a running program:  gdb <executive> <pid> 

• Python debugger (pdb or rather ipdb*):  

•General hints for debugging 

• Segmentation violations due to memory management 

‣ Life-time vs. scope 

‣ Only use raw pointers when you have to!  

(I.e. when performance becomes crucial and you know what you’re doing) 

‣ Look at smart pointers (part of C++11/14 standards, alternative: boost) 

• Even if you don’t have crashes: Memory Leaks. Try valgrind (valgrind.org)

24

Use appropriate tools for debugging

*import ipdb; ipdb.set_trace()  # set a breakpoint

http://valgrind.org
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•While writing your code: 

• There are static code analysis tools that can help you 

• Try out a linter for your preferred editor  

(e.g. atom: https://atom.io/packages/linter) 

‣ Highlights potentially problematic code 

‣ Your code will be more reliable 

•Static checking at compile time: 

• Clang has a nice suite of static checks implemented  

http://clang-analyzer.llvm.org  

‣ Can also enforce coding styles 

• Takes longer than compiling; HTML reports with possible bugs 

• Might flag some false-positives 

•Static code checking helps you avoid problems!

25

Static Code Checking

https://atom.io/packages/atom-lint
http://clang-analyzer.llvm.org
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•Don’t underestimate the challenge of tracking your code 

• Deceitfully simple at the beginning… 

‣ e.g.: zip/tar-based backups, versioning and distribution 

• but the illusion shatters soon enough 

‣ upgrading tools or library,  refactoring, rushing-in a patch 

‣ “long-range” bugs are a thing, not always immediate to 

catch 

•Get familiar with Revision Control early 

• Learn to track (and comment) every code change 
• RCS Essential (and unavoidable) for collaboration

26

Always track code changes - Revision Control

 

https://jwiegley.github.io/git-from-the-bottom-up/
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•Once upon a time: CVS and Subversion [“CVS done right”]* 

•Nowadays: Distributed revision control - Great for personal use  

• Easy to work on the go 

• Your local copy has everything (including history) 

•The most popular nowadays git: git-scm.com  

[“there is no way to do CVS right”]* 

• Other distributed solutions are: Mercurial, bazaar… 

• Easy to get started…

27

Revision Control Software

* paraphrasing Linus Torvalds 

Repo-To-Repo Collaboration

Git repo

Git repo Git repo

Central-To-Working-Copy Collaboration

SVN repo

Working Copy Working Copy

http://git-scm.com
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> git init 
•Initialized empty Git repository in /TestDirectory/.git/ 

•

28

git basics
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> git init 
•Initialized empty Git repository in /TestDirectory/.git/ 
> vim README.md 
•skipping this part. 

•

29

git basics
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> git init 
•Initialized empty Git repository in /TestDirectory/.git/ 
> vim README.md 
•skipping this part. 
> git add README.md 

•
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git basics
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> git init 
•Initialized empty Git repository in /TestDirectory/.git/ 
> vim README.md 
•skipping this part. 
> git add README.md 
> git commit -m “Initial commit of readme.” 

•

31

git basics

Random github commit messages:  
http://whatthecommit.com/ 

http://whatthecommit.com/
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•Learn basic concepts and commands 

• Create repository, add file, commit new versions and retrieve: git init, add, 

commit, checkout 

•Familiarise with parallel development concepts 

• Branching, merging, rebasing: git branch, merge, rebase  

•Learn how to interact with remote repositories and users 

• Retrieve and share code: git clone, pull, push, fetch 

•Not always intuitive 

• That’s because code management is a hard problem to solve 

• Worth investing a bit of time reading about it*
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Git - in a nutshell

*Ultimate git guide: https://jwiegley.github.io/git-from-the-bottom-up/

Git tutorials: 
http://git-scm.com/book/en/v2/Getting-Started-About-Version-Control 
http://pcottle.github.io/learnGitBranching/

https://jwiegley.github.io/git-from-the-bottom-up/
http://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
http://pcottle.github.io/learnGitBranching/
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•Create your own .gitconfig to get the most out of git 

• Colors, aliases, etc… 

• Special mention:  graphical history 
‣ a lifesaver when working with many branches/

developers 

•Integrate git with your shell 

• Tab-completion and git information shell prompt 

‣ Reduce the risk 
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Git - there’s more than meets the eye 

Magic alias (one of many): 
[alias] 
    lg = log --color --graph --all --pretty=format:'%Cred%h%Creset -%C(yellow)%d%Creset %s %Cgreen(%cr) %C(bold blue)<%an>%Creset' --abbrev-commit

Git bash shell integration: 
https://git-scm.com/book/en/v2/Appendix-A%3A-Git-in-Other-Environments-Git-in-Bash

Git configuration: https://git-scm.com/docs/git-config

https://git-scm.com/book/en/v2/Appendix-A%3A-Git-in-Other-Environments-Git-in-Bash
https://git-scm.com/docs/git-config
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UNIT TEST

Function F

Input

Result

•Different tests, different purposes: 

• Unit test 
‣ Testing “units of code”, e.g. a function or class 
‣ Given a defined input => expected output? 

• Integration test 
‣ Testing a larger part of your software 

‣ For example running an example and checking output 

•Do not mix it up with verification 
‣ Checking if specifications are met

35

What do we mean with tests?

INTEGRATION TEST

Function GFunction F

Sanitizer

Input

Post-Process

Result
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•How to come up with tests? 

• What should the algorithm do? 

‣ Check if well defined input produces correct result 

• How should the algorithm fail? 

‣ Check if wrong input fails in the way you want 
•You’ll probably miss corner cases 

• Once you discover them, implement a test! 

‣ Only let a bug hit you once 

• Have beta-testers / users help you 

‣ Use issue tracker 

‣ Be responsive! 
•Look at existing solutions to implement tests 

• Python: doctest and unittest packages 

• C++: CTest (integrated with cmake) & Catch
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Writing good tests is hard

Tests needed 
to find bugs

Tests needed 
for coverage

https://docs.python.org/3.6/library/doctest.html
https://docs.python.org/3.6/library/unittest.html
https://cmake.org/Wiki/CMake/Testing_With_CTest
https://github.com/philsquared/Catch
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> python testfib.py 

•
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doctest

def fib(n): 
    """ Returns the fibonacci series at n 
    >>> [fib(n) for n in range(6)] 
    [0, 1, 1, 2, 3, 5] 
    >>> fib(-1) 
    Traceback (most recent call last): 
      ... 
    ValueError: n should be >= 0 
    """ 
    if n < 0:   raise ValueError("n should be >= 0") 
    if n == 0:  return 0 
    a, b = 1, 1 
    for i in range(n-1): 
        a, b = b, a+b 
    return a 

import doctest 
doctest.testmod()



page Alessandro Thea

Interlude:
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> python testfib.py 
>   

•
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doctest

def fib(n): 
    """ Returns the fibonacci series at n 
    >>> [fib(n) for n in range(6)] 
    [0, 1, 1, 2, 3, 5] 
    >>> fib(-1) 
    Traceback (most recent call last): 
      ... 
    ValueError: n should be >= 0 
    """ 
    if n < 0:   raise ValueError("n should be >= 0") 
    if n == 0:  return 0 
    a, b = 1, 1 
    for i in range(n-1): 
        a, b = b, a+b 
    return a 

import doctest 
doctest.testmod()
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> python testfib.py -v 

•
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doctest

def fib(n): 
    """ Returns the fibonacci series at n 
    >>> [fib(n) for n in range(6)] 
    [0, 1, 1, 2, 3, 5] 
    >>> fib(-1) 
    Traceback (most recent call last): 
      ... 
    ValueError: n should be >= 0 
    """ 
    if n < 0:   raise ValueError("n should be >= 0") 
    if n == 0:  return 0 
    a, b = 1, 1 
    for i in range(n-1): 
        a, b = b, a+b 
    return a 

import doctest 
doctest.testmod()



page Alessandro Thea

Interlude:

ISOTDAQ 2020 - Programming for Today’s Physicists and Engineers

> python testfib.py -v 
> Trying: 
>     [fib(n) for n in range(6)] 
> Expecting: 
>     [0, 1, 1, 2, 3, 5] 
> ok 
> Trying: 
>     fib(-1) 
> Expecting: 
>     Traceback (most recent call last): 
>       ... 
>     ValueError: n should be >= 0 
> ok 
•
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doctest

def fib(n): 
    """ Returns the fibonacci series at n 
    >>> [fib(n) for n in range(6)] 
    [0, 1, 1, 2, 3, 5] 
    >>> fib(-1) 
    Traceback (most recent call last): 
      ... 
    ValueError: n should be >= 0 
    """ 
    if n < 0:   raise ValueError("n should be >= 0") 
    if n == 0:  return 0 
    a, b = 1, 1 
    for i in range(n-1): 
        a, b = b, a+b 
    return a 

import doctest 
doctest.testmod()



Test your 
software
and not just in production!
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•When you release your software: 

• Tag the repository 

‣ Ensure everyone has the same code 

• Test in the target environment 

‣ Fresh virtual machine 

• Accompanying documentation 

‣ Produce Doxygen pages 

‣ Update wikis (new version) 

‣ Make sure all examples work 

•Ideal case: All this is done for every commit!
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Releasing the Software

✓
✓
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•Working in groups on software can be hard: 

• Somebody changes something: Other code breaks 

• Avoid such nuisances by testing regularly! 

•New contribution to the code base: 

• Check everything works  

‣ Can do this by hand… Tedious 

‣ Better: Automate it. 

•Many solutions exist that automatically test things: 

• Check compilation 

• Check all defined test cases 

• Write nice summaries
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Continuous integration

Gitlab CI - https://about.gitlab.com/features/gitlab-ci-cd/ 

Travis CI - https://travis-ci.org

https://about.gitlab.com/features/gitlab-ci-cd/
https://travis-ci.org
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stable

machine learning

GPU programming

The answer depends: 
- Analysis? 
- DAQ / Trigger? 
- External conditions? 

- Can you choose?

46

Choosing the programming language

Data serialization
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Choose wisely 
- Favour documentation and 

support over features 
- Favour large user-bases

47

Choosing the programming language



Do you really 
have to program?
Or has somebody already done it for you?
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•Unified Modelling Language: sketch a design 

• Probably everyone has seen structure diagrams 

‣ Relationships of classes (or larger components) 

• Behaviour diagrams 

‣ What does the user do and what should be the result? 

• Interaction diagrams 

‣ How does data and control flow? 

•Forces you to be concrete! 
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UML Diagrams

ImplementationInterface

Member
Related 
Class

Order

Prepare 
Food

Serve

Eat

CUSTOMER STAFF

to make them, look at draw.io or lucidchart.com

https://www.draw.io/
https://www.lucidchart.com/
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•Maintainability 
• Is it easy to adapt to changed environment? 

• Can you cope with (slightly) changed requirements? 

•Scalability 
• Large data volumes 

‣ Think about data-flow and data layout 

‣ Try to avoid complicated data structures 

•Re-usability 
• Identify parts of the design that could be used elsewhere 

• Could these be extracted in a dedicated library?
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Things to keep in mind when designing
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•Developing software efficiently: 

• Avoid duplication of work 

• Avoid feature bloating  

• Ensure code quality 

• Deliver code timely 

•Many approaches to accomplish this: 

• Examples: Iterative and Test-Driven Development 

•Similar principles, different focus 

• on team management (agile development) 

• on actual programming style (lean development / TDD) 

• broad guidelines to deliver (iterative development)
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Development Cycles

Iterative Development

Test-Driven Development

Requirements

Design

ImplementTest

Deploy
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•Sometimes git command line is just not enough 

• Multiple developers, many branches, parallel developments 

• Non-trivial merge conflicts 

• Even mid-sized project become hard to navigate 

•Git GUIs can make a significant different when in trouble 

• SourceTree, Git-Kracken, Sublime Merge, Git Up 

‣
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Git & collaborative programming
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Example : Sublime Merge - repository overview
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Another example : Git Up - focus on branch structure
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•Sometimes git command line is just not enough 

• Multiple developers, many branches, parallel developments 

• Non-trivial merge conflicts 

• Even mid-sized project become hard to navigate 

•GUIs can make a significant different when in trouble 

• SourceTree, Git-Kracken, Sublime Merge, Git Up 

• Like with editors, find what is best for you 
‣ takes time, but it’s worth the effort 
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Git & collaborative programming
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•Large projects can be trying for some editors 

• and for you 

• large codebase, files, folders, branches, tags, etc… 

• Your favourite vintage editor may just not be up to the job 

•Modern editors offer non-negligible advantages 

• Modern GUIs, flexible plugin system, large user community 

• Syntax highlighting, Integration with VCS', preview, 

terminal integration and more 

•
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Reprise: Text editors 
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Text Editors++: Visual Studio Code
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Text Editors++: Visual Studio Code
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Text Editors++: Visual Studio Code
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Text Editors++: Visual Studio Code
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•Easy to host & share your projects: 

• Setting up a shared repo can be done via any cloud service, e.g. dropbox 

• Many open-source hosting sites, biggest: github.com 

• Not open to public but CERN users: GitLab.cern.ch 

‣ Both include fairly usable issue-tracking 

• The beauty of pull-requests*: 

‣ Do builds on pull-requests (combine with CI) 

‣ Review contributed code on pull-requests 

•Git is widely used — de-facto community standard 

• Exception: Python uses Mercurial 

•  
•The more you learn the more you’ll like it!
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The git ecosystem

+

* merge-request in GitLab

|

http://github.com
http://gitlab.cern.ch
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•Easy to host & share your projects: 

• Setting up a shared repo can be done via any cloud service, e.g. dropbox 

• Many open-source hosting sites, biggest: github.com 

• Not open to public but CERN users: GitLab.cern.ch 

‣ Both include fairly usable issue-tracking 

• The beauty of pull-requests*: 

‣ Do builds on pull-requests (combine with CI) 

‣ Review contributed code on pull-requests 

•Git is widely used — de-facto community standard 

• Exception: Python uses Mercurial 

•  
•The more you learn the more you’ll like it!
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The git ecosystem

+

* merge-request in GitLab

|

= 
💛

http://github.com
http://gitlab.cern.ch


Use the right tools 
for the job
Look around, you won’t regret it



General Tips & Pointers
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•Coursera — courses by universities (Caltech, Johns Hopkins, Stanford and more) 

• https://www.coursera.org/courses  

• Large variety of courses 
‣ Not only technology / programming 

‣ Also physics, biology, economics… and more 

‣ Also in different languages 
•Udacity — courses from industry (Google, Intel, Autodesk) 

• https://www.udacity.com/courses#!/all  

‣ Mixed courses: Some free, recently switched to a payed model with monthly fees 
•University Homepages — have a gander… many courses available through YouTube etc. 

• e.g.: Programming Paradigms, Stanford University  

•http://ureddit.com/ — University of Reddit
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Learning about software development

https://www.coursera.org/courses
https://www.udacity.com/courses#!/all
https://www.youtube.com/watch?v=Ps8jOj7diA0&feature=PlayList&p=9D558D49CA734A02&index=0
http://ureddit.com/
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•Before you write trigger / DAQ software (and firmware!), you should know the ins and outs: 

• What is: compiler, interpreter, linker, terminal, object, class, pointer, reference 

• If these concepts are not clear: Excellent material on the web (previous slide) 

•Before (and while) implementing: Think 

• Smart solutions can take significant amount of time…  

put it on the back-burner if you have other things to work on 

•Read! Ask! Write! The internet is full of information… Blogs, tutorials, StackOverflow,  

also Wikipedia can be very useful to get a grasp of new concepts
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Closing Advice
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•These slides were full of starting points: You have to follow up to get something out of it 

• Most of it are tools to make your life easier 

‣ Bonus: If you know them you’ll have an easier time to follow nerd-talk 

• Nothing is free 

‣ You’ll have to invest some effort to learn 

‣ If you do that this week: We’ll be here to help! 

•Homework: 

• Install git, start a repository. Try branching on the web 

• Run tmux, kill the connection, reconnect and see if you can continue where you left off 

• Tune your .bashrc / .bash_profile to get a more useful prompt 

• Try out vim / emacs / atom / vscode and learn what suits you best 

‣ Download a shortcut summary…  

‣ Learn how to block-select, indent multiple lines, rename occurrences of text
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Conclusion



Master by 
doing
Don’t forget: Have fun while doing so!
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Random Things

6 Stages of Debugging: 
1.That can’t happen. 
2.That doesn’t happen on my machine. 
3.That shouldn’t happen. 
4.Why does that happen? 
5.Oh, I see. 
6.How did that ever work? 

— http://plasmasturm.org/log/6debug/ 

“Debugging is like being the 
detective in a crime novel where 
you are also the murderer.” 

— @fortes

Guru of the Week: (Not any more) 
regular C++ programming problems 
with solutions by Herb Sutter 
http://www.gotw.ca/gotw/ 

Go-language: Designed with threading in mind 
http://tour.golang.org/welcome/1 

2014 lecture has complementary stuff: 
http://indico.cern.ch/event/274473/session/21/material/0/0.pdf

About JavaScript: 
https://www.destroyallsoftware.com/talks/the-birth-and-death-of-javascript  
https://www.destroyallsoftware.com/talks/wat Want to try your programming skills?  

Google code jam (registration open): 
codingcompetitions.withgoogle.com/codejam  
Also you can just practice  
by solving nice problems.

http://plasmasturm.org/log/6debug/
http://www.gotw.ca/gotw/
http://tour.golang.org/welcome/1
http://indico.cern.ch/event/274473/session/21/material/0/0.pdf
https://www.destroyallsoftware.com/talks/the-birth-and-death-of-javascript
https://www.destroyallsoftware.com/talks/wat
http://codingcompetitions.withgoogle.com/codejam


More Random Things
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•In HEP probably no way around ROOT / RooFit 

• Maintained at CERN, used in LHC experiments 

•GNU R — www.r-project.org  

• Used widely among statisticians (including finance and others) 

• Interpreted language + software for analysis and graphical representation 

• ROOT bindings now available (use it through TMVA) 

•SciPy — http://www.scipy.org/  

• Collection of python libraries for numerical computations, graphical representation and containing additional data structures 

•Sci-kitlearn: — http://scikit-learn.org/stable/  

• Python library for machine learning 

• ROOT bindings available (usable through TMVA)
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http://www.r-project.org
http://www.scipy.org/
http://scikit-learn.org/stable/
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•Data visualisation: 
•Matplotlib (part of SciPy) 

• histograms, power spectra, scatterplots and more.. extensive library for 2D/3D plotting 

•ROOT 

• Again, probably no way around it… Sometimes a little unintuitive 

•Other: 
•JaxoDraw — http://jaxodraw.sourceforge.net/  

• Feynman graphs through “axodraw” latex package 

•tex2im — http://www.nought.de/tex2im.php  

• Need formulas in your favourite WYSIWG presentation tool? 

•GraphViz — http://www.graphviz.org/ or MacOS: http://www.pixelglow.com/graphviz/  

• Diagrams / Flowcharts with auto-layout
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http://jaxodraw.sourceforge.net/
http://www.nought.de/tex2im.php
http://www.graphviz.org/
http://www.pixelglow.com/graphviz/
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•SAGE — www.sagemath.org 

• Open source alternative to Matlab, Maple and Mathematica  

•GNUPlot — http://www.gnuplot.info/ 

• Quick graphing and data visualisation 

•Wolfram Alpha — http://www.wolframalpha.com/ 

• Wolfram = Makers of Mathematica.. A… ask me anything?: 
‣ http://www.wolframalpha.com/input/?i=how+much+does+a+goat+weigh 

‣ Answer: Assuming “goat” is a species specification. Result: 61 kg 
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http://www.sagemath.org
http://www.gnuplot.info/
http://www.wolframalpha.com/
http://www.wolframalpha.com/input/?i=how+much+does+a+goat+weigh

