### MICROCONTROLLERS

Maurício Féo

m.feo@cern.ch

**CERN/Nikhef** 

### MICROCONTROLLERS

Maurício FEO

m.feo@cern.ch

**CERN/Nikhef** 

#### **OBJECTIVES**

- Understand what are microcontrollers.
  - What are they?
  - What are they used for?
  - ▶ How do they work?
  - How can I use them?
  - Are they suitable for my project?
- Example of applications.
- Have an overview of the lab 10.

### WHAT IS A MICROCONTROLLER?

Tiny computer integrated in the same chip.





#### ► CPU

- Memories
- ► I/O Interfaces
- ► Etc.



#### WHAT IS A MICROCONTROLLER?

- Tiny computers integrated in a single chip
  - ► CPU, Memories and Peripherals in the same chip.

#### Main differences w.r.t. a computer:

- Suitable for embedded applications.
- ► Low cost (ATtiny: ~\$0.27)
- ► Low power consumption (ATtiny43U: 0.15uA in Sleep Mode)
- Reduced clock frequency (~ dozens of MHz)
- Stand-alone devices (Some require only power to work)
- ▶ Low level control of your application.

#### WHAT ARE THEY USED FOR?

- Monitoring
- Data Acqusition
- ▶ Control
- Applications where:
  - ► High performance is not required.
  - Other devices are inadequate (overkill) due to:
    - ► High power consumption
    - ▶ need of external memories and peripherals
    - ▶ cost
    - etc.

#### WHERE ARE THEY USED?

- Everywhere!
- Consumer electronics, home appliances, toys, vehicles, computers, hobbyist projects, etc.
- ► According to wikipedia trusted sources, a typical mid-range automobile has as many as 30 or more microcontrollers.
- According to me an even more trusted source, you have at least one in your pocket right now.

### WHERE ARE THEY USED?









#### Windows

An error has occurred. To continue:

Press Enter to return to Windows, or

Press CTRL+ALT+DEL to restart your computer. If you do this, you will lose any unsaved information in all open applications.

Error: OE: 016F: BFF9B3D4

Press any key to continue

# CERN CENTOS 7

An error has occurred. To continue:

Press Enter to return to Windows, or

Press CTRL+ALT+DEL to restart your computer. If you do this, you will lose any unsaved information in all open applications.

Error: OE: 016F: BFF9B3D4

Press to continue \_



The one used on the lab.

### Which of the following 8-bit chip families would you consider for your next embedded project?







The one used on the lab.





The one used on the lab.





The one used on the lab.

- ▶ 8 bits architecture
- ▶ 32kB Flash program memory
- ► 2kB RAM
- ▶ 2kB EEPROM
- ► Max 20MHz
- ► 6 x PWM
- ▶ 6 x ADC channels (10bits)
- ▶ 23 I/O pins
- 3 timers (2x8 bits 1x16 bits)
- ► 1x USART
- ► 1x SPI
- ► 1x TWI (I<sup>2</sup>C)
- ▶ 0.6mA/MHz

15





#### **AVR CPU**

Data
Memory

Data

Memory

Data

Memory

Data

Memory

Harvard Architecture

- 8 bits architecture (with 16bits for instructions)
  - ► Instructions executed 8 bits by 8 bits
- ▶ Reduced Instruction Set Computing (RISC) (~130 instructions)
- ▶ Up to 20 MIPS at 20 MHz (1 instruction / clock cycle)

17





### GENERAL PURPOSE INPUT/OUTPUT (GPIO)

- Pins programmable as Input and Output
- Read / Write digital signals
- '0' = 0V (Gnd), '1' = 5V (Vcc)
- Controlled by 3 registers:
- ▶ DDR (Data Direction Register)
- PORT (Where you write when it's output)
- PIN (Where you read when it's input)



#### INTERRUPT

- Interrupts break the program flow to handle some event.
- It may be triggered by:
  - Pin change (rise/fall/toggle)
  - Timers / Counters
  - Analog Comparator
  - ▶ ADC reading done
  - Serial interfaces (Rx/Tx done)
- It allows the program to handle an event "right after" its occurrence, regardless of where the program is and without the need of polling constantly.









#### TIMERS / COUNTERS

- Internal registers that increment triggered by:
  - A clock source: Timer
  - An external event: Counter
- May be used to:
  - Measure time
  - ► Raise interruption on:
    - Overflow
    - Reach a certain value (OCR)
  - Create waveform
    - PWM





Ultrasonic distance sensor Measures distance based on the time to echo of an ultrasonic pulse.

### PULSE WIDTH MODULATION (PWM)

- You can create an output signal which value depends on the status of the timer.
- Outputs a train of periodic digital pulses with controlled width.
  - (Can be used to "mimic" an analog signal)



#### PULSE WIDTH MODULATION (PWM)

- You can create an output signal which value depends on the status of the timer.
- Outputs a train of periodic digital pulses with controlled width.
  - ► (Can be used to "mimic" an analog signal)







#### ANALOG COMPARATOR

- Tells whether positive pin AIN0 voltage is higher than negative pin AIN1.
- Output is the internal bit ACO\* of reg ACSR\*.
- Can be used to:
  - Compare two analog signals
  - Trigger a Timer/Counter
  - Trigger an interrupt (rise, fall or toggle)



ACO = Analog Comparator Output
ACSR = Analog Comp. Control and Status Register

#### ANALOG TO DIGITAL CONVERTER (ADC)

- ▶ 10-bit resolution
- Vref can be:
  - ▶ Vcc (Power source)
  - ▶ 1.1V internal ref.(from bandgap)
  - External ref. on pin 'AREF'
- Successive approximation
  - ▶ 13-260 us Conversion time
- Interrupt on complete
- 6 multiplexed channels on DIP package
  - (internal Temp sensor on ch8)







#### SERIAL INTERFACES: USART

#### UNIVERSAL SYNCHRONOUS-ASYNCHRONOUS RECEIVER TRANSMITTER

- A simple protocol
- ► Widely used to communicate with PCs due to compability with RS232 protocol. (RS232 is not used anymore in most PCs but it's still very easy to find USB-Serial converters)
- ▶ Up to 250kbps
- May trigger interrupts:
  - ▶ Tx complete
  - ► Rx complete
  - Data reg empty





#### SERIAL INTERFACES: SPI

#### SERIAL PERIPHERAL INTERFACE

Differently from the USART, SPI can talk to multiple devices on the same bus, but needs a Slave Select signal per Slave Device

▶ Up to 10Mbps! (clk/2)

Slaves do not "talk" autonomously.

> Must be querried (and clocked) by master.

#### All SD cards

Uses the SPI serial interface and can be easily accessed from a uC.



### SERIAL INTERFACES: TWI (I2C)

TWO WIRE INTERFACE (INTER-INTEGRATED CIRCUIT)

- ▶ I2C allows multiple Masters and Slaves on the same bus. (up to 128)
- ▶ Up to 400kbps (on the Atmega328)
- Used in a variety of digital sensors.







#### WATCHDOG TIMER (WDT)

- A Watchdog Timer is a timer clocked by an on-chip oscillator
- Once the counter reaches a certain value, the microcontroller may:
  - Trigger an interrupt
  - Reset the microcontroller
- Used to prevent your program from getting stuck in any part of the code.
- You use it by enabling the WDT and spreading WDT reset instructions on particular places of your code.
  - If it gets stuck in an infinite loop, for ex., the counter won't be reset and the microcontroller will be reset.

#### **CLOCK CIRCUIT**

- ▶ Up to 20MHz from:
  - External clock from a pin
  - External crystal oscillator
  - Internal RC oscillator
    - ▶ 7.3-8.1 MHz
  - ▶ 128kHz Internal oscillator
    - ▶ 128 kHz
- System Clock Prescaler
  - Divides the clock if needed
- ► Keep in mind:

Power consumption is proportional to clock frequency.







#### SLEEP MODES

Standby

➤ There are multiples Sleep Modes available. Each turns off certain parts of the microcontroller to save power and can only be waken up by certain sources.

| Symbol                         | ol Parameter |                    |         |                                    | Col                               | ndition            | 1                            |                             | Min.                         | Min. Typ. <sup>(2)</sup> |                  | Ma                  | Max. |     | Units     |                         |
|--------------------------------|--------------|--------------------|---------|------------------------------------|-----------------------------------|--------------------|------------------------------|-----------------------------|------------------------------|--------------------------|------------------|---------------------|------|-----|-----------|-------------------------|
|                                | down         | modo(              | 3)      | WD                                 | WDT enabled, V <sub>CC</sub> = 3V |                    |                              | 4.2                         |                              | 1                        | 8                |                     | μA   |     |           |                         |
| Power-down mode <sup>(3)</sup> |              |                    | WD      | WDT disabled, V <sub>CC</sub> = 3V |                                   |                    | 0.1                          |                             |                              | 2                        |                  |                     | μА   |     |           |                         |
|                                |              | Α                  | ctive ( | Clock D                            | omain                             | ıs                 | Oscillators                  |                             | Wake-up Sources              |                          |                  |                     |      |     |           |                         |
| Sleep Mode                     |              | clk <sub>cPU</sub> | сікғызн | clk <sub>io</sub>                  | clk <sub>ADC</sub>                | CIK <sub>ASY</sub> | Main Clock<br>Source Enabled | Timer Oscillator<br>Enabled | INT1, INT0 and<br>Pin Change | TWI Address<br>Match     | Timer2           | SPM/EEPROM<br>Ready | ADC  | WDT | Other I/O | Software<br>BOD Disable |
| Idle                           |              |                    |         | X                                  | X                                 | X                  | X                            | X <sup>(2)</sup>            | X                            | X                        | X                | X                   | X    | X   | X         |                         |
| ADC Noise<br>Reduction         |              |                    |         |                                    | X                                 | x                  | х                            | X <sup>(2)</sup>            | X <sup>(3)</sup>             | х                        | X <sup>(2)</sup> | x                   | Х    | X   |           |                         |
| Power-down                     |              |                    |         |                                    |                                   |                    |                              |                             | X <sup>(3)</sup>             | Х                        |                  |                     |      | Х   |           | Х                       |
| Power-save                     |              |                    |         |                                    |                                   | Х                  |                              | X <sup>(2)</sup>            | X <sup>(3)</sup>             | Х                        | Х                |                     |      | Χ   |           | X                       |
| Standby <sup>(1)</sup>         |              |                    |         |                                    |                                   |                    | Х                            |                             | X <sup>(3)</sup>             | Х                        |                  |                     |      | X   |           | X                       |
| Extended                       |              |                    |         |                                    |                                   | X <sup>(2)</sup>   | x                            | X <sup>(2)</sup>            | <b>X</b> (3)                 | х                        | X                |                     |      | х   |           | x                       |

#### POWER AND DEBUG

- Brown-Out Detector (BOD)
  - Resets the device whenever Vcc is below a certain threshold.
- Power-on Reset (POR)
  - ▶ Ensures the device is reset from Power On.
- ▶ DebugWIRE
  - On-chip debug tool from AVR.

### REVIEW



## ATMEGA328 MINIMUM REQUIRED CIRCUIT NEEDED CIRCUITRY: USING AN EXTERNAL CRYSTAL





## ATMEGA328 MINIMUM REQUIRED CIRCUIT NEEDED CIRCUITRY: USING THE INTERNAL OSCILLATOR

► Atmega328 comes with an internal 8MHz oscillator that can minimize the required circuit to a single battery.





## USAGE OF MICROCONTROLLERS DEVELOPMENT CYCLE

- Write your code. From Assembly to C. Or even higher level:
- ▶ Compile it. (debug)
- ► Upload to the uC memory (On Chip debug)
  - Parallel programming
  - Serial downloading (SPI)
  - Self-programming (With bootloader)
- ► (Burn the fuses)









41

#### SELF-PROGRAMMING: BOOTLOADER

- The AVR core can write to it's own program memory.
- The Bootloader Section can be locked from rewritting.
- This way developers can allow users to write their own programs without compromising the bootloader section.
- This can also be used to ease the programming of the memory, eliminating the need for an external programmer.





## ARDUINO





#### **ARDUINO**

- ➤ Open-source platform created for "makers" who have no knowledge in electronics but still want their creations to interact with the environment.
- Custom IDE + libraries
- Inexpensive and really easy to use
  - ► (Almost plug and play)
- Huge community all over the world creating libraries, compatible hardware and sharing projects
- Stackable addons called shields



#### SETTING PWM TO 25% DUTY CYCLE

#### THE <del>MEDIEVAL</del> ORIGINAL WAY

#### Registers:

DDR = Data Direction Register
TTCROA = Timer/Counter Control Register A
TTCROB = Timer/Counter Control Register B

OCROA = Output Compare Register 0 A

```
DDRD |= 0x40;

TCCROA |= (1<<WGM00) | (1<<WGM01);

TCCROA |= (1<<COM0A1) | (1<<COM0A0);

OCROA = 0x3F;

TCCROB |= (1<<CS00);
```

Set direction of pin 6 from PORTD to output.

25%

75%

Set WGM to Fast PWM.

Set COM to «Clear On Compare».

Set OCR to 25% (0x3F of 0xFF)

Set the clock source to timer.

#### Bits:

```
WGM0[1..0] = Waveform Generator Mode 0
COM0A[1..0] = Compare Output Mode 0 A
CS0[2..0] = Clock Select 0
```

45

## SETTING PWM TO 25% DUTY CYCLE

THE CHEATING ARDUINO WAY



Look at the board which pin you want to use.

analogWrite(6, 63);  $\frac{25}{100} = \frac{x}{255} \quad \text{Find x.}$ 



#### ADVANTAGES OF PROTOTYPING PLATFORMS

NEVER HAVE I FELT SO CLOSE TO ANOTHER SOUL

AND YET SO HELPLESSLY ALONE

AS WHEN I GOOGLE AN ERROR

AND THERE'S ONE RESULT

A THREAD BY SOMEONE WITH THE SAME PROBLEM

AND NO ANSWER

LAST POSTED TO IN 2003



### ADVANTAGES OF PROTOTYPING PLATFORMS

| PRO                                     | CON                                                                          |
|-----------------------------------------|------------------------------------------------------------------------------|
| Community / Support / StackOverflow     | Performance is generally not good                                            |
| Much easier to learn                    | No full control over the code                                                |
| Fast development and Prototyping        | Cost is higher                                                               |
| Portable code between supported devices | TRU ENGINEERS gon' make fun of u cos ur not BRAVE ENOUGH to handle raw bits. |

## USAGE OF MICROCONTROLLERS FIRST OF ALL

- Is a microcontroller suitable for my application?
  - ▶ Cost
  - Development time
  - ▶ Power consumption
  - ▶ Processing power
  - ► Timing requirements
  - ► Etc.



## USAGE OF MICROCONTROLLERS CHOOSING A MICROCONTROLLER

- What kind of problem do I have?
  - Processing intensive? Power limitation? Embedded?
- Which kind of sensors/actuators will be used?
  - Digital/Analog? Voltage levels?
- What are the required peripherals?
  - ▶ USB? I2C? ADCs? Timers?
- What is the environment?
  - Space? Right next to the LHC beam? (Temperature, radiation, etc.)

## Alternatives?

#### EMBEDDED SYSTEMS

- ▶ Microcontroller
- ► FPGA Field Programmable Gate Array
- ► DSP Digital Signal Processor
- ► SOC System On a Chip
- ► Single Board Computer
- ► ASIC Application Specific Integrated Circuit

#### EMBEDDED SYSTEMS

FPGA Xilinx Spartan 6 Ethernet Controller + USB



Raspberry Pi Zero SoC (no FPGA) \$5 USD 1GHz 512MB RAM



NodeMCU ~\$7 EUR Wifi Microcontroller



Arduino as a delay control unit, as a temperature monitor, as an USB TTL/NIM generator.









Arduino as a remote GPIB controller.

Telegram BOT for Testbeam monitoring.





What's your purpose?

-To report status and wake up Mauricio at 3am.



Is it possible to build a complete particle detector and data acquisition system using Arduino microcontroller and Arduino Language?

## ArduSiPM a low cost particle detector



#### http://www.arduino.org/blog/ardusipm-solution

"The ambit of data acquisition for particle detection is a field apparently limited to top scientists from CERN in Geneva and Fermilab in Chicago. Cosmic ray and radiation detection can be a great exploration for teachers, students and science enthusiasts, and ArduSiPM was created to make it accessible."

Cosmic Ray detector









#### Application Example 2:

Use of ArduSiPM in the CERN UA9 and CRYSBEAM activity

(substitute old Scintillator and electronics for PM)







- As beam losses counter @ SPS



- This work has been supported by the ERC Ideas Consolidator Grant
- No.615089 "CRYSBEAM".





## LAB 10 - MICROCONTROLLERS





# THAT'S IT. OBRIGADO!

Maurício Féo m.feo@cern.ch

Figure 13-2. General Digital I/O<sup>(1)</sup>



## CPU DIAGRAM



## ADC DIAGRAM

Figure 23-1. Analog to Digital Converter Block Schematic Operation,



### ANALOG COMPARATOR



Figure 19-1. USART Block Diagram<sup>(1)</sup>

## **USART**

