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Introduction to machine learning
• Build models which learn patterns from data to later make predictions on 

unseen data 

• e.g. predict whether a person will like computer games from characteristics 

• ML has been used to great effect in HEP, even since 1980s 

• Most commonly in offline analysis and reconstruction 

• But increasingly in realtime / trigger & DAQ 
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https://arxiv.org/abs/1603.02754

• Decision tree 
thresholds and 
prediction 
probabilities are 
learned from the 
training data

https://arxiv.org/abs/1603.02754
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Neural Networks
• Model inspired by brain structure with neurons and 

synapses 

- Neurons are real valued representations of 
‘something’ 

- Synapses connect neurons (in one direction) with a 
weight 

• Input neurons are your data variables 

• Output neuron(s) are your prediction class 
probabilities, or continuous variables if performing a 
regression 

• Hidden layers bring the performance of deep 
neural networks 

- Intermediate layers of neurons learn a more abstract 
representation of the data 

- More capable than ‘shallow’ networks on raw data
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Neural Networks
• The values of neurons in a layer is given by the product of the neuron values 

of the previous layer and the matrix of weights, with an added ‘bias’, and a 
non-linear ‘activation function’ applied 

• Without the activation function, we’re just doing linear transformations of our 
variables 

• The actual values of these weights and biases are learned from data during 
training…
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Training with Gradient Descent
• When training with supervised learning we start with a neural network with randomised 

weights and a collection of labelled training data 

• We need to evaluate the performance of our network, using a loss function, e.g. mean 
squared error: 

• y is the true value of the labelled example, i. ŷ is the value predicted by the neural 
network 

• Would like to minimise the loss function to get the best performing network 

- Predictions as close to true labels as possible 

• Update the (initially not very good) network parameters by evaluating the derivative of the 
loss function w.r.t those parameters, and iterate! 

- ‘lr’ is learning rate
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Tips
• There’s a lot of tricks and a rich literature of best practises to get best performance 

(including computational): 

• Training with batches - evaluate the gradient for the mean over a batch of samples rather 
than for every sample 

• Tuning the learning rate, optimizer 

• Choosing a loss function, activation function 

• Choosing the best network architecture 

- Type of network, number of layers, number of neurons in each layer 

• Hyperparameter scan / optimization - automatically search for the best solution to the 
above for your problem 

• Run network compression / pruning after training: improve robustness of your NN, and 
improve computational performance
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Tools / Frameworks
• You don’t need to write all these algorithms yourself! 

• Many excellent software tools and frameworks are out there for building ML models, 
training and deploying them 

• There are particularly good sets of tools in Python 

 8
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A made up example
from keras.models import Sequential 

from keras.layers import Dense 

from sklearn.model_selection import train_test_split 

import uproot 

X, y, = uproot.open(‘data.root’).arrays([…]) 

X_train, X_test, y_train, y_test = train_test_split(X, y) 

nn = Sequential() 

nn.add(Dense(64, activation=‘relu’, input_shape=2, 
name=‘hidden’)) 

nn.add(Dense(2, activation=‘softmax’, name=‘output’)) 

nn.compile() 

nn.fit(X_train, y_train, batch_size=100) 

nn.save(‘nn.h5’)
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Convolutional Neural Networks
• The previous slides showed specifically Fully Connected or Dense Neural Networks 

• Many other topologies exist for different types of problems 

• Convolutional Neural Networks for images: apply ‘convolutional filters’ - small neural networks - 
scanning over the pixels 

- Reduces the number of parameters compared to feeding the pixels into a Fully Connected NN 

- Adds translational invariance: the object in the image could be anywhere, and is filtered down by 
the convolutions
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Image: towardsdatascience

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
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Recurrent Neural Networks
• A Neural Network with a built in ‘memory’ 

• Used where there is ordered data, e.g. time series, natural language processing 

• There are a few different flavours: Long Short Term Memory (LSTM), Gate Recurrent Unit 
(GRU) 

• The LSTM cell has an internal state, and fully connected neural networks update this at 
each iteration 

• Could be used, e.g. to predict the next word in a sentence
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Image: colah’s blog

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Graph Neural Networks
• We’ve seen NNs suitable for applying on ‘high level features’ (Fully Connected), images 

(Convolutional), and time series (Recurrent) 
• Graph networks are well suited to problems described by graphs of vertices and edges 
• Cluster / classify data not only according to its coordinates, but its neighbourhood  
• Iteratively update (strengthen/weaken) connections with fully connected or convolutional 

networks 
• Used in, e.g., molecule synthesis for drug discovery 
• Promising in HEP for multi-clusters in ‘point cloud’ like detectors, e.g. tracking, calorimetry in 

high pileup; hierarchical type problems, e.g. tracking, jets

 12
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BDTs for Higgs
• Several BDTs involved in the analysis of Higgs 

boson decay to two photons using high-level 
variables 

- e.g. particle mass, η, isolation 

• To separate signal photons from background 
(photons from jets) 

• Choosing the most likely vertex for the photons 
(neutral, so no tracking) 

• A diphoton quality BDT (separating signal like 𝛾 𝛾 
events from background) 

• Used to increase the purity of the selected diphoton 
dataset 

• Increase in sensitivity due to ML equivalent to 
having 50% more data (and no ML)
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arXiv:1804.02716v2 
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Deep NN Jet Tagging
• Big successes in HEP from ML for jet 

ID, example: DeepJet from CMS 

• 1x1 CNN layers for ‘feature 
engineering’ (combining variables of 
single particles) 

• LSTM recurrent networks iterate over 
particles sequentially 

• Finally Dense layers combine features 
learned from the previous steps and the 
global variables 
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better

CMS-DP-2018-058

http://cds.cern.ch/record/2646773?ln=en
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Neutrino Detector Reconstruction
• From MicroBooNE, Liquid Argon time-projection chamber (LArTPC) neutrino experiment 

• Using a CNN to identify neutrino interactions using a CNN 

• e.g. simulated neutrino interaction yielding 1 μ, 3 p, 2 π. Background from cosmic data 

• Yellow box is ‘truth’ box containing all charge deposits from interactions 

• Red is bounding box predicted by CNN
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arxiv:1611.05531

https://arxiv.org/abs/1611.05531
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Data Quality Monitoring
• Using an Autoencoder for anomaly detection 

- Network has a ‘bottleneck’, learning an abstract representation of the data 

- After bottleneck, network tries to reproduce the input image 

- For anomalous input, the recreated image is not similar to the original input, and flagged 

• Applied to CMS muon drift tube system, able to identify failures not spotted by previous, 
rule based system
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arxiv:1808.00911

https://arxiv.org/abs/1808.00911
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ML For Networking
• From ATLAS, predicting the transfer time of files between sites 

• One metric in determining the network-aware scheduling of GRID jobs and file storage 

• Uses a Long Short Term Memory (LSTM) 

• Inputs: source, destination, activity, bytes, start timestamp, and end timestamp 
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doi :10.1088/1742-6596/898/6/062009
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ML for TDAQ: Hardware
• Machine Learnings algorithms are highly parallelisable 

- Recall Neural Network forward pass is matrix-vector products and non-linear 
functions on vectors 

• Can be accelerated with appropriate hardware: 

- CPUs with vector/SIMD units (e.g. AVX) 

- GPU, FPGA, TPU (T = Tensor) 

• ML is also big business, so lots of high performance solutions out there 

• Often for Trigger and DAQ we can ‘train offline’, ‘predict online’ 

• Could use different hardware for each phase 

• In the context of a possible heterogenous compute future in HEP, will need to 
accommodate ML processors

 18
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GPUs for ML
• GPUs are very powerful for machine learning 

- Many more parallel arithmetic ops than a CPU 

- Very high memory bandwidth 

- Training / predicting ML models on large datasets 
doesn’t involve much branching/control 

• Usually, using GPUs for ML, you don’t write CUDA 
code yourself but use a higher level framework like 
Tensorflow (or higher still with Keras, PyTorch) 

- Extremely easy to execute on a GPU with these 
environments 

- Exception might be when doing something extremely 
custom 

• See GPU lecture and Lab 14 from this school for more 
on programming GPUs
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https://indico.cern.ch/event/828931/contributions/3469947/attachments/1863365/3275744/lamanna_isotdaq_2020.pdf
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GPUs for ML
• Biggest gains for GPUs are seen in training, but can also outcompete CPUs in inference 

• Here, running inference on K80 GPUs, measuring images / second (throughput) 

• mlperf.org has nice benchmarking of different hardware (not only GPUs) running on 
different models
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From Microsoft Azure

http://mlperf.org
https://azure.microsoft.com/en-us/blog/gpus-vs-cpus-for-deployment-of-deep-learning-models/
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FPGAs for ML
• FPGAs are also highly suited to ML tasks - 

massive parallelism, high memory bandwidth 

• There are several big providers using FPGAs for 
ML in their datacentres 

- e.g. Microsoft with Bing and Azure, FPGA 
availability on Amazon Web Services 

• Main way to execute ML on FPGAs: 

- Vendor libraries with fixed silicon designs and an 
instruction set - Deep Learning Processor Unit 
(DPU) for Xilinx, Deep Learning Acceleration 
(DLA) Suite for Intel 

• Can outperform GPUs mostly at maintaining 
high-throughput with low latency (< 2ms) 

• Able to achieve best ‘performance per Watt’ 

• Can benefit from in-network processing with 
FPGA’s high speed connectivity
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Xilinx: xDNN

https://www.xilinx.com/support/documentation/white_papers/wp504-accel-dnns.pdf
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ML Specific Processors
• There are some processors out there 

specifically designed for Machine Learning / AI 

• e.g. Tensor Processing Unit (TPU) from Google 

• Devices aiming at low power embedded 

- Internet of Things, Smartphones 

• Soon: Xilinx Versal ACAP for FPGAs with 
embedded Vector units (or vice versa?) 

• Many different things out there, each targeting 
a specific optimisation: 

- Best overall throughput 

- Lowest latency 

- Lowest power / smallest footprint 

• Can choose appropriate device for your task
 22
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Examples of ML in TDAQ
• CMS Level 1 Trigger Endcap Muon system uses a BDT to fit the muon momentum 

from hits in the muon stations 

- Complicated geometry and magnetic field makes an ML solution useful 

• Deployed using a ‘large LUT’ implemented in DDR on a mezzanine card to the FPGA 

• BDT is evaluated for every possible input, with the output written at that position in the 
LUT 

• In LHCb, Bonsai BDT has been used since the beginning of LHC data taking in their 
online software event selection 

• Bonsai BDT is a technique to compress BDTs into a binned parameter space for faster 
execution 

- Was used as the main selection path for most LHCb analyses
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Machine Learning at L1 Trigger

 24

Javier Duarte I hls4ml 6

CMS Trigger
High-Level 
TriggerL1 Trigger

1 kHz 
1 MB/evt

40 MHz

100 kHz

• Level-1 Trigger (hardware)


• 99.75% rejected


• decision in ~4 μs 

• High-Level Trigger (software)


• 99% rejected


• decision in ~100s ms

• After trigger, 99.99975% of events are gone forever

Offline
L1 Trigger High-Level


Trigger

computing farm

FPGAs

100 ms 1 s1 ns 1 μs

• Typical ‘latency landscape’ of LHC experiment 
• To deploy Machine Learning at the L1 Trigger need to: 

• Be able to execute ML algorithms in O(1μs) 
• Execute these algorithms on FPGAs
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high level synthesis for machine learning

2 Building neural networks with hls4ml

In this section we give an overview of the basic task of translating a given neural network model into
a firmware implementation using HLS. We then pick a specific use-case to study, though the study
will be discussed in a way that is meant to be applicable for a broad class of problems. We conclude
this section by discussing how to create an e�cient and optimal firmware implementation of a neural
network in terms of not only performance but also resource usage and latency.

2.1 hls4ml concept

Our basic task is to translate a trained neural network by taking a model architecture, weights, and
biases and implementing them in HLS in an automated fashion. This automated procedure is the task
of the software/firmware package, hls4ml. A schematic of a typical workflow is illustrated in Fig. 1.

-

	

/

hls  4  ml

hls4ml

HLS  4  ML

Figure 1: A typical workflow to translate a model into a firmware implementation using hls4ml.

The part of the workflow that is illustrated in red indicates the usual software workflow required
to design a neural network for a specific task. This usual machine learning workflow, with tools such
as Keras and PyTorch, involves a training step and possible compression steps (more discussion
below in Sec. 2.3) before settling on a final model. The blue section of the workflow is the task of
hls4ml which translates a model into an HLS project that produces a firmware block. This automated
tool has a number of configurable parameters which can help the user customize the network translation
for their application.

The time to perform the hls4ml translation is much shorter (minutes to hours) than a custom
design of a neural network and can be used to rapidly prototype machine learning algorithms without
dedicated engineering support. For physicists, this makes designing physics algorithms for the trigger
or DAQ significantly more accessible and e�cient, thus allowing the "time to physics" to be greatly
reduced.

– 5 –

https://hls-fpga-machine-learning.github.io/hls4ml/

Implemented a user-friendly, open-source tool to develop and optimize FPGA 
firmware design for Machine Learning inference: 

• reads as input models trained with standard ML libraries (keras, PyTorch, onnx) 
• uses Xilinx HLS software (more accessible to non-FPGA-expert) 
• comes with implementation of common ingredients - layer types, activation functions 
• and novel ingredients for fast, efficient inference - binary/ternary NNs, network optimisations 

https://arxiv.org/abs/1804.06913
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https://hls-fpga-machine-learning.github.io/hls4ml/
https://arxiv.org/abs/1804.06913
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What are FPGAs?
Field Programmable Gate Arrays are reprogrammable integrated circuits 
See talks “Introduction to Field Programmable Gate Arrays”, “Advanced FPGA 
Programming”, and Labs “FPGA Programming”, “SoC FPGA” at this school 
Contain many different building blocks (‘resources’) which are connected together as 
desired 
Extremely parallel processors 
‘Computing in space as well as time’ 
Processing workhorse of LHC triggers 
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FPGA diagram

Machine learning algorithms are ubiquitous in HEP  

FPGA usage broad across HEP experiments 
Centered on DAQ and trigger development 

Some early adaptions of ML techniques in trigger [1] 

FPGA development becoming more accessible 

High Level Synthesis, OpenCL 

FPGA interest in industry is growing 
Programmable hardware with structures 
that maps nicely onto ML architectures  

MACHINE LEARNING & FPGAS 7

FPGA 
“programmable hardware” 

DSPs (multiply-accumulate, etc.) 
Flip Flops (registers/distributed memory) 

LUTs (logic) 
Block RAMs (memories)

[1] Carnes et al., https://indico.cern.ch/event/567550/contributions/2629686/

LUTs - generic logic 

DSPs - for multiplication 

BRAM - for local, high-throughput 
storage 

 

https://indico.cern.ch/event/828931/contributions/3469945/attachments/1863378/3274458/2020_01_14_FPGA_Lecture_HS.pdf
https://indico.cern.ch/event/828931/timetable/#39-advanced-fpga-programming
https://indico.cern.ch/event/828931/timetable/#39-advanced-fpga-programming
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High Level Synthesis
• Usually, FPGA programming is hard 

- Requires a lot of expert engineering 
knowledge, long development cycles 

• New design tools from the FPGA 
companies - ‘High Level Synthesis’ - make 
it a lot easier 

- Enabling more physicists to contribute 

- Enabling experienced FPGA designers to 
complete designs faster 

• In HEP this is enabling us to bring more of 
the offline algorithms into the Level 1 Trigger 

- Kalman Filter for charged particle track 
reconstruction 

- Machine Learning…
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entity add is
port(
  clk : in  std_logic;
  a   : in  signed(31 downto 0);
  b   : in  signed(31 downto 0);
  c   : out signed(31 downto 0)
)
end add;

architecture rtl of add is
  if rising_edge(clk) then
    c <= a + b;
  end if;
end rtl;

int add (int a, int b){
  return a + b;
}

vs
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High Level Synthesis
• With a Hardware Description Language (HDL), one writes a description of a circuit 

• With HLS, you write a description of your algorithm 

- The compiler decides the circuit 

• Controlling how the compiler maps your algorithm to a circuit requires careful code 
design 

• And use of #pragma compiler directives to guide the compiler 

• These also provide a powerful handle for optimisation not accessible to HDL developers

 28

#define N 16
typedef ap_fixed<16,8> T;

void myAlgo(T a[N], T b[N], T c[N]){
    #pragma HLS array_partition variable=a,b,c complete
    for(int i=0; i<N; i++){
        #pragma HLS unroll 
        c[i] = a[i] * b[i];
…

Use registers

Execute loop 
iterations 
in parallel
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Physics case: jet tagging

Study a multi-classification task to be implemented on FPGA: discrimination 
between highly energetic (boosted) q, g, W, Z, t initiated jets

CASE STUDY: JET SUBSTRUCTURE 10

Just an illustrative example, lessons are generic! 
Might not be the best application, but a familiar one


ML in substructure is well-studied

CASE STUDY: JET SUBSTRUCTURE 10
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Might not be the best application, but a familiar one


ML in substructure is well-studied

CASE STUDY: JET SUBSTRUCTURE 10

Just an illustrative example, lessons are generic! 
Might not be the best application, but a familiar one


ML in substructure is well-studied

 top
other quark

CASE STUDY: JET SUBSTRUCTURE 10

Just an illustrative example, lessons are generic! 
Might not be the best application, but a familiar one


ML in substructure is well-studied

CASE STUDY: JET SUBSTRUCTURE10

Just an illustrative example, lessons are generic! 
Might not be the best application, but a familiar one


ML in substructure is well-studied

Z W gluon

t→bW→bqq

3-prong jet

Reconstructed as one massive jet with substructure

q/g backgroundW→qqZ→qq

2-prong jet 2-prong jet no substructure

and/or mass ~ 0

 29
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Physics case: jet tagging

• Fully connected neural network with 16 expert-level inputs: 

- Relu activation function for intermediate layers 

- Softmax activation function for output layer

 30

16 inputs

64 nodes 
activation: ReLU

32 nodes 
activation: ReLU

32 nodes 
activation: ReLU

5 outputs 
activation: SoftMax

AUC = area under ROC curve 
(100% is perfect, 20% is random)

• We train (on GPU) the five output multi-classifier on a sample of ~ 1M events with two 
boosted WW/ZZ/tt/qq/gg anti-kT jets

better
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With hls4ml package we have studied/optimized the FPGA 
design through:


• compression: reduce number of synapses or neurons 

• quantization: reduces the precision of the calculations (inputs, 
weights, biases) 

• parallelization: tune how much to parallelize to make the 
inference faster/slower versus FPGA resources

Efficient NN design for FPGAs
FPGAs provide huge flexibility


Performance depends on how well you 
take advantage of this

Constraints:
Input bandwidth
FPGA resources
Latency 

NN training

FPGa project 

designing
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Efficient NN design: quantization
• Quantify the performance of the classifier with the AUC 

• Expected AUC = AUC achieved by 32-bit floating point 
inference of the neural network 

0101.1011101010

width
fractionalinteger

Full performance 
at 6 integer bits

Scan integer bits

Fractional bits fixed to 8

Scan fractional bits
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Efficient NN design: reuse

• Key feature of hls4ml: a handle to trade resource usage and latency/throughput 
• Reuse = 1: fully unroll everything onto different resources 

- Fastest, most resource intensive 

• Reuse > 1: one resource used sequentially for several operations 
- Slower, but save resources

 33

mult

mult

mult

mult

mult

mult

mult

reuse = 4
use 1 multiplier 4 times

reuse = 2
use 2 multipliers 2 times each

reuse = 1
use 4 multipliers 1 time each

Longer latency

More resources
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Parallelisation
• Low reuse gives lowest latency, most resource usage 

• High reuse gives longer latency, lower resource usage 

• Throughput decreases with increasing reuse 

• A large enough model will use all of the resources with reuse=1, so sometimes must 
increase it

 34

Figure 11: DSP usage in the pruned 3-layer model as a function of the network precision. The various
curves illustrate resource usage for di�erent resource usage factors.

Figure 12: FF and LUT usage in the pruned 3-layer model as a function of the network precision. The
various curves illustrate resource usage for di�erent resource usage factors.

corresponding to the four layers of neuron values that must be computed, with each increment in reuse
factor. This is in line with expectations from Eq. 2.4 where additional reuse of multipliers in a given
layer calculation incurs added latency. In the right plot of Fig. 13, the initiation interval is shown for
di�erent reuse factors. By design, the initiation interval and the reuse factor match as a new input can
be introduced to the algorithm only when all multiplications for a given DSP multiplier are completed.
At very low network precision, the HLS synthesis initiation interval is smaller than the reuse factor.
This is because multiplications are no longer implemented in DSPs but through FFs and LUTs.

– 19 –

Figure 13: Latency (left) and pipeline interval (right) in the pruned 3-layer model as a function of the
network precision. The various curves illustrate resource usage for di�erent resource usage factors.
The latency is given in clock cycles for a 200 MHz clock frequency.

3.3 Firmware Implementation

In this section, we compare the resource estimates from HLS synthesis with a firmware implementation
after final Vivado optimization. To get a rough scaling of the di�erences between the HLS synthesis
resource estimates and a final firmware implementation, we use a "bare" firmware design that allows for
the compilation of the ML algorithm with almost no additional resources. This “bare” implementation
consists of a simple VHDL wrapper that connects the available pins on the FPGA input/output directly
to the hls4mlfirmware block with the assumption that all inputs are delivered on the same clock edge
for evaluation. Including the VHDL wrapper, we perform the firmware implementation and compare
the resulting resource usage.

When performing the implementation, we noticed that the target latency benchmarks in HLS
could not be attained, and we had to reduce the clock speed so as to allow for the compiled algorithm
to meet the timing constraints. The amount needed to reduce of the clock speed became larger with
NN complexity; algorithms that took a large part of the FPGA required slower clocks. For the 3-layer
pruned NN at 32-bit precision, a clock of 8 ns was needed to implement an HLS block designed for
5 ns. This is observed for all reuse factors. A simple solution to overcome this issue is to synthesize
the HLS design for a slightly faster clock than intended. We also note that di�erent versions of Vivado
HLS have varying degrees of success meeting timing. We have had more success meeting timing with
Vivado 2�16.4 than 2�17.2.

Due to the limited number of pins, we now consider a di�erent neural network model with fewer
inputs. BK: subtle point to clarify how this IO limitation will a�ect everyone. In this case, we consider
a small 1 hidden layer model with 10 inputs and 1 output node. We also tested with the 3-layer
pruned network and we find similar quantitative conclusions in the regions where the number of pins
was su�cient for implementation. For the rest of this subsection, we present results with the 1-layer
network using an 8 ns clock at implementation.

– 20 –

~ 175 ns 

~ 75 ns
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Efficient NN design: compression
• Iterative approach: 

- train with L1 regularization (loss function augmented with penalty term):

- sort the weights based on the value relative to the max value of the 
weights in that layer

Train 
with L1

Retrain 
with L1

Prune

Prune

Retrain 
with L1 Prune

…

1st iteration

2nd iteration

7th iteration

……
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Efficient NN design: compression
• Iterative approach: 

- train with L1 regularization (loss function augmented with penalty term):

- prune weights falling below a certain percentile and retrain

Train 
with L1

Retrain 
with L1

Prune

Prune

Retrain 
with L1 Prune

…

1st iteration

2nd iteration

7th iteration

……

- sort the weights based on the value relative to the max value of the 
weights in that layer
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Efficient NN design: compression
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Train 
with L1

Retrain 
with L1

Prune

Prune

Retrain 
with L1 Prune

…

1st iteration

2nd iteration

7th iteration

……

Prune and repeat the train for 7 iterations
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Efficient NN design: compression
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Train 
with L1

Retrain 
with L1

Prune

Prune

Retrain 
with L1 Prune

…

1st iteration

2nd iteration

7th iteration

……

Prune and repeat the train for 7 iterations
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Figure 3.1: Pruning the synapses and neurons of a deep neural network.

the connections that have been removed. The phases of pruning and retraining may be repeated
iteratively to further reduce network complexity. In effect, this training process learns the network
connectivity in addition to the weights — this parallels the human brain development [109] [110],
where excess synapses formed in the first few months of life are gradually "pruned", with neurons
losing little-used connections while preserving the functionally important connections.

On the ImageNet dataset, the pruning method reduced the number of parameters of AlexNet
by a factor of 9× (61 to 6.7 million), without incurring accuracy loss. Similar experiments with
VGG-16 found that the total number of parameters can be reduced by 13× (138 to 10.3 million),
again with no loss of accuracy. We also experimented with the more efficient fully-convolutional
neural networks: GoogleNet (Inception-V1), SqueezeNet, and ResNet-50, which have zero or very
thin fully connected layers. From these experiments we find that they share very similar pruning
ratios before the accuracy drops: 70% of the parameters in those fully-convolutional neural networks
can be pruned. GoogleNet is pruned from 7 million to 2 million parameters, SqueezeNet from 1.2
million to 0.38 million, and ResNet-50 from 25.5 million to 7.47 million, all with no loss of Top-1 and
Top-5 accuracy on Imagenet.

In the following sections, we provide solutions on how to prune neural networks and how to
retrain the pruned model to recover prediction accuracy. We also demonstrate the speedup and
energy efficiency improvements of the pruned model when run on commodity hardware.

3.2 Pruning Methodology

Our pruning method employs a three-step process: training connectivity, pruning connections,
and retraining the remaining weights. The last two steps can be done iteratively to obtain better
compression ratios. The process is illustrated in Figure 3.2 and Algorithm 1.

→ 70% reduction of weights 
and multiplications w/o 
performance loss
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• DSPs (used for multiplication) are often 
limiting resource


- DSPs have a max size for input (e.g. 
27x18 bits), so number of DSPs per 
multiplication changes with precision

compression

70% compression ~ 70% fewer DSPs

Number of DSPs available
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Figure 3.1: Pruning the synapses and neurons of a deep neural network.

the connections that have been removed. The phases of pruning and retraining may be repeated
iteratively to further reduce network complexity. In effect, this training process learns the network
connectivity in addition to the weights — this parallels the human brain development [109] [110],
where excess synapses formed in the first few months of life are gradually "pruned", with neurons
losing little-used connections while preserving the functionally important connections.

On the ImageNet dataset, the pruning method reduced the number of parameters of AlexNet
by a factor of 9× (61 to 6.7 million), without incurring accuracy loss. Similar experiments with
VGG-16 found that the total number of parameters can be reduced by 13× (138 to 10.3 million),
again with no loss of accuracy. We also experimented with the more efficient fully-convolutional
neural networks: GoogleNet (Inception-V1), SqueezeNet, and ResNet-50, which have zero or very
thin fully connected layers. From these experiments we find that they share very similar pruning
ratios before the accuracy drops: 70% of the parameters in those fully-convolutional neural networks
can be pruned. GoogleNet is pruned from 7 million to 2 million parameters, SqueezeNet from 1.2
million to 0.38 million, and ResNet-50 from 25.5 million to 7.47 million, all with no loss of Top-1 and
Top-5 accuracy on Imagenet.

In the following sections, we provide solutions on how to prune neural networks and how to
retrain the pruned model to recover prediction accuracy. We also demonstrate the speedup and
energy efficiency improvements of the pruned model when run on commodity hardware.

3.2 Pruning Methodology

Our pruning method employs a three-step process: training connectivity, pruning connections,
and retraining the remaining weights. The last two steps can be done iteratively to obtain better
compression ratios. The process is illustrated in Figure 3.2 and Algorithm 1.

Efficient NN design: compression
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Using hls4ml
• The model to translate 

• Some test vectors for 
simulation (check precision) 

• Output directory / name 

• Target FPGA, clock speed 

• Model data precision and 
parallelisation 

• More fine grained data 
precision and parallelisation 

- Per-layer, or per-layer type 

• Then:

 40

KerasJson: keras/KERAS_3layer.json 
KerasH5:   keras/KERAS_3layer_weights.h5 
#InputData: keras/KERAS_3layer_input_features.dat 
#OutputPredictions: keras/KERAS_3layer_predictions.dat 
OutputDir: my-hls-test 
ProjectName: myproject 
XilinxPart: xcku115-flvb2104-2-i 
ClockPeriod: 5 

IOType: io_parallel # options: io_serial/io_parallel 
HLSConfig: 
  Model: 
    Precision: ap_fixed<16,6> 
    ReuseFactor: 1 
#  LayerType: 
#    Dense: 
#      ReuseFactor: 2 
#      Strategy: Resource 
#      Compression: True 

hls4ml convert -c my_model.yml 
hls4ml build -p my-hls-test
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• DSPs (multipliers) usually the limiting resource for our NN inference 

• Instead, use 1- or 2-bit weights with limited performance loss 

• Can have very efficient computation in the FPGA 

• Binarize weights but not 
gradients during 
backpropagation 

• Use Binary Tanh, Ternary 
Tanh or ReLu activation 

• Batch Normalization 

• BNN: arxiv.1602.02830 

• TNN: arxiv.1605.04711

Binary / Ternary neural networks

 41

https://software.intel.com/en-us/articles/accelerating-neural-networks-with-binary-arithmetic

https://software.intel.com/en-us/articles/accelerating-neural-networks-with-binary-arithmetic
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BNN - Jet Classification
• Design an architecture to perform the same jet classification task but now with binary 

weights and activations 

• Performed hyperparameter optimization to find most performant model within some 
constraints

 42

16 inputs

64 nodes

ReLU

32 nodes

ReLU

32 nodes

ReLU

5 outputs

SoftMax

16 inputs

448 nodes

Batch Normalization


Binary Tanh

224 nodes

Batch Normalization


Binary Tanh

224 nodes

Batch Normalization


Binary Tanh

5 outputs

Batch Normalization

7x neurons

per layer



Machine Learning - ISOTDAQ Valencia - Sioni Summers17.01.2020

BNN - Jet Classification
• Design an architecture to perform the same jet classification task but now with binary 

weights and activations 

• Performed hyperparameter optimization to find most performant model within some 
constraints 

• Performance is a little bit worse, but not a lot
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Original: 16-bit weights 
Average accuracy: 0.75

Binarized: 1-bit weights 
Average accuracy: 0.72
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BNN - Dense Layer
• DSPs often limiting FPGA resource  

• Encode ‘-1’ as ‘0’ 

• Multiplication become XNOR, sum becomes bitcount

 44

activation function multiplication addition
precomputed and 
stored in BRAMs DSPs logic cells

xn = gn(Wn,n�1xn�1 + bn)

activation function xnor no bias
simple binary tanh 

/ sign function logic cells

xn = gn(Wn,n�1xn�1 + bn)xn = gn(Wn,n�1xn�1 + bn)

A B A*B
-1 -1 1
-1 1 -1
1 -1 -1
1 1 1

A B A==B
0 0 1
0 1 0
1 0 0
1 1 1

A A’
-1 0
1 1

Original: 16-bit weights

Binarized: 1-bit weights
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• Results targeting Xilinx VU9P FPGA at 200 MHz 

BNN - Jet Classification

Model Accuracy Latency 
(μs)

DSP 
(%)

LUT 
(%)

FF 
(%)

Original model 0.75 0.06 60 7 1

Original model  
(70% compressed) 0.75 0.09 15 1.7 0.7

Optimized BNN 
(16x448x224x224x5) 0.72 0.21 - 15 7

BNN w/ReLu 
(16x128x64x64x5) 0.70 0.140 4 6 1

Optimized TNN 
(16x128x64x64x64x5) 0.72 0.11 - 6 1

TNN w/ReLu 
(16x64x32x32x5) 0.68 0.06 2 2 0.2
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Summary
• This was a whirlwind introduction to Machine Learning, its applications in 

HEP, and emerging use in Trigger and DAQ 

• It is a rich and exciting field of research, constantly inventing new, more 
powerful techniques 

• At the same time, device developers are supporting the growth of ML with 
faster, more parallel processors, and devices designed specifically for ML 

• Deploying ML into the realtime processing for Trigger and DAQ is becoming 
increasingly possible 

• I’ve shown the hls4ml package for running ML inference in sub-microsecond 
latency on FPGAs 

• For more: fastmachinelearning.org/hls4ml

 46

https://fastmachinelearning.org/hls4ml

