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Overview

The need for tracking information at the Trigger of High
Energy Physics experiments and how to do it fast

We'll split the problem into “track finding” (define fast a
“road” where a track can be) and “track fitting” (determine
the track characteristics)

The specific examples from ATLAS (FTK and HTT) use

- Track finding with Pattern matching in Associative
Memories , and Track fitting in FPGAs

Basically you'll see that: if you want to avoid or cannot afford
calculating something time consuming, split the problem
and use pre-calculated patterns and quantities.

We'll see also examples of other approaches, with both steps
done in FPGAs.

We'll also see examples beyond High Energy Physics
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A. Introduction
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Probability of interaction
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Looking at many & complex events
every 25ns two proton bunches cross each other
- a superp05|t|on of >25 pp coII|S|ons

Atlas event with a Z boson decaying to two muons and 24 additional interaction vertices.

The Trigger and Data Acquisition system,

* watches 40M such “events” (bunch crossings) / sec
- O(1) billion pp interactions per second

* select online “the most interesting” O(1k) events/sec

(1 : 1 Million pp interactions deemed interesting enough to keep)

* and log them for offline use with a resolution of a
~100 Mpixel camera (100M channels: total ~1.5 MB/event)



Trigger at 2 stages:
Levell (L1: fast, no detailed info) &

High Level Trigger (HLT: slower, using detailed info)

* Trigger & DAQ : Select events and get the data from the
detector to the computing center for the first processing.

Permanent
storage

B e
s —
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Example: Looking for Higgs

- How do we see the Higgs?

- from its children!
E.g.., 4 muons traversing

the detector (red lines here)

ATLAS
D EXPERIMENT
http://atlas.ch

Run: 189280
Event: 143576946
2011-09-14 12:37:11 CEST

E — mc2 — E2:m2C4+p2C2_> E2:m2+p2 — m:\/(EZ_pZ)
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The more you know about the events, the easiest
you select the “signal” and reject the "background”

When there is limited time budget (L1 trigger): decide
based only on the muon and calorimeter systems

But may need information from the inner tracker as

early as possible to make an “educated” decision
and keep as much signal as possible

e.g., 2 “jets” of tracks, which are usually boring,
they could actually be

H->bb “ HT 1

You just heard from Francesca Pastore
the way various experiments trigger on the “interesting events”
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Atlas event with a Z boson decaying to two muons and 24 additional interaction vertices.

o —

« Connecting the “hit” readout cells
from one detection layer to the other

* traces the charged particle's path as it
moves radially outward and its' position
Is measured in each detector layer

\t

2 “real tracks”
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2 “real tracks” + extra hits
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Tracking is a combinatorics problem:
WhICh combmatlons of h|ts ﬁt track hypothe5|s7

Atlas event with a Z boson decaying to two muons and 24 additional interaction vertices.

But when you look

T at this event/picture,
= e you just see hits!

You have to find the tracks...

And, number of possible tracks do not scale
linearly with number of hits. e.qg.:

p p | | | | | |
—»* - 2 hits A Tits
1 candidate track 4 candidate tracks
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Tracking is a combinatorics problem:
WhICh combmatlons of h|ts ﬁt track hypothe5|s7

Atlas event with a Z boson decaying to two muons and 24 additional interaction vertices.

But when you look

T at this event/picture,
= e you just see hits!

You have to find the tracks...

— Lots of hit combinations to try

— a huge combinatorics problem

p_>*<_p — becoming worse and worse
as luminosity increases

— a big burden on CPUs
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B. ATLAS solution (FTK and HTT):
Associative Memories for track
finding & FP

* The basic technique between FTK and HTT In
ATLAS are the same for what | want to discuss
here, so | give FTK as an example

« FTK is a hardware pre-processor finding tracks and storing them for
further usage by the trigger

« HTT is a co-processor who is ordered by other components to the find
tracks for them
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FTK (Fast TracKer):
dedicated hardware helping the HLT,
by doing the tracking before the HLT

Permanent
storage

— — B
N —

Fast TracKer (FTK), a
pre-processor for a CPU farm
For each event accepted by L1
(100kHz),

find all its tracks in <100 psec

— X1000 faster than the HLT farm
of PCs
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ATLAS' Fast TracKer (FTK) processes all Level-1 accepted events (100kHz)
Output: all tracks w/ pT>1 GeV available to HLT. Typical FTK latency ~100us,
compared to O(50ms) HLT

¥ high-bandwidth connections with detector

**x HW optimized for the s%%ciﬁc tasks

N ~ Example:
o R-phi view of Barrel region:

rrrrrr

........
L A K-
_____

Track crosses 12 detector Iayers tji’

\ *2 SET layers’

Total # of readout channels: 98M
PIXELS: 80 millions + IBL: 12M

SCT: 6 millions
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For L2: SVT trigger at CDF
For HLT: FTK in ATLAS
For HLT & L1 : HTT in ATLAS

Detector design
for triggering

TRT

1. Here FPGAS cluster hits and

Data transter get their centroid as the hit
1. Data position.
clustering proper Processing Units
N y 2a.
. . 2a. Trac Associative Memories
2. Processing Units (PUs) | | Finding < (pattern matching)
made of these two steps *\
2b. Track

Each PU, takes care of
a given detector slice (“n-¢ tower”) \
x\

In FTK: 64 towers HLT
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1. Input & Data “Formatting”:
cluster adjacent hits,
find the position of each cluster,

forward them to the Processing Unit
responsible for this geometrical n-¢ region
- towers

FPGA replica of pixel matrix

ik ciEEEe

Significant data reduction

- by using hereafter only the

¢ direction -->

n direction -->

ISOTDAQ2020, Valencia, 18/1/2020

position of each cluster

(in the example: from now on,
instead of working with information
from 14 cells, we work with
information from 4 clusters)

/

K. Kordas - Pattern Recognition w/ Associative Memories & FPGAs
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Detail: Clustering algorithm how-to

NIM A617:254-257,2010

FPGA replica of pixel matrix IEEE TNS, vol. 61, no.6, pp.3599-3606, 2014
mm 7 doi; 10,1109/TNS.2014.2364183
. SPARTAN-6 / ~
XC6SLX16"

A J CSBIDAABCOB4D I ond Al _‘_I__C>—l — |

c [ —— [ oad av I | select I

o) il module hits

B left most

% ‘ ‘_ Y [ top most hit )

& >_—|_i-|_—|~
propagate I
selection

n direction --> % < i _through cluster :
1% phase: S S : | | J
> Pixel module: a 328x144 matrix. =
> Replicate a part of it (8x164) in hw matrix. > % | readout I
> Matrix identifies hits in the same “cluster” (= ‘Slg I cluster I
adjacent pixels) = \Q | ;}l
2" phase: -
> Hits in cluster analyzed (averaged) to get 2nd pipeline stage v
“the hit position”, used in all next steps high level Average out
> Flexibility to choose algorithm! cluster calculator P

analysis
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1. Find low "~ Roads R N

resolution track S . V. 748 (. N —
: \NEEAN / / N_\
candidates called | c=mrrrrrrm Ao
roads”. Solve \_ Y 7 S y
most of the Pattern recognition w/ Associative
combinatorial Memory
bl Originally:
proboieim. M. Dell’Orso, L. Ristori, NIM A 278, 436
(1989)
2. Then track fitting .\ NG )
. . \ / N\
inside the roads. — - G '
Thanks to 1st e\ V4 N l
\ A\ 7 N /

step, this is much
. http://www.pi.infn.it/~orso/ftk/
easlier. IEEECNF2007 2115.pdf

Excellent results with linear approximation!
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24.
The coarse pattern matching first

In both FTK and HTT: use 8 silicon layers
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The Event

==

==

=

=

The Pattern

Bank
Because the detecto$

has a finite resolution (“bin size”),
many different tracks generate the
* “same hit pattern,
So we have a finite number of patterns

ISOTDAQ2020, Valencia, 18/1/2020

and a finite-size pattern-bank.
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Training: simulated tracks to find possible

patterns

Pattern #1: ewow» 1.
Each possible track

becomes a

“pattern”
Pattern #0: = .
a series of numbers:
o g /| one coordinate for

Pattern Bank:
PattO 11 12 14 156

Pattl 06 06 07 07

Patt2 15 17 18 20 2

Pattern #2: All patterns are stored in a
“pattern bank”

ISOTDAQ2020, Valencia, 18/1/2020 K. Kordas - Pattern Recognition w/ Associative Memories & FPGAs 24



Coarse track finding = pattern matching: does
your event contain any of these patterns?

3.
Compare the hits

Pattern Bank: iIn your event with

PattO 11 12 14 15
Pattl 06 06 07 07

Patt2 15 17 18 20
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Compare ALL the hits in each event with
ALL the stored patterns.

@D 4.

After all comparisons
are done, we have
the list of matched
patterns in the
event =

the list of “roads”
to perform refined
tracking after

Pattern Bank:

PattO 11 12 14 15

Patt2 15 17 18 20

f
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How to match data to patterns?

How to do the
Comparison?

O
Pattern Bank: : % Check each of the

5x3x6x6 = 540
hit combinations
to each pattern?

PattO 11 12 14 15
Pattl 06 06 07 07

Patt2 15 17 18 20

{f.

layer 0O layer 1 layer 2 layer 3
B 2 3 1
11 f 6 7
12 10 7 14
16 14 20
22 13 26
28 30

e event
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Np = number of straight lines crossing the detector layers

n= #Dbins per IaB

e
Np:(m—l)n2

Can convince yourselves about this, with m=4 in the above drawing

m = # of layers

-

|

For a detector with 8 layers, with 1M channels/layer, Np =7 10% 11}

( Re-bining with 2-channels per bin: N =» n/2 means Np - Ya Np )
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and search time are critical

patterns
« Need a lot of memory for the patterns:

- OK, can use larger (“coarser”) bins for 1st pattern
matching (will come back to this later).

« But still, you have to match hits with patterns fast:

- Linear search, of the pattern-table (“brute force”) is
the slowest.

- If list of patterns is ordered, can do “binary” search:

* Pick the middle element in the list,

« Compare the data to the pattern to find the good
half of the list,

e pick the middle of the new (halved) list, and so on.
Example: The list to be searched: L=1346 8 9 11. The value to be found: X = 4.

Compare X to 6. X is smaller. Repeat with L =1 3 4.
Compare X to 3. X 1s bigger. Repeat with L = 4.
Compare X to 4. They are equal. We're done, we found X.

ISOTDAQ2020,



Speed is extremely important at
triggering.
Find tracks at ultimate speed
— use "Associative Memories”
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VIS STRUCTURES FOR TRACE FINDENG
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We discuss the architecture of a device based on the concept of associative memory designed to solve the track finding problem,
typical of high energy physics experiments, in a time span of a few microseconds even for very high multiplicity events. This
“machine” is implemented as a large array of custom VLSI chips. All the chips are equal and each of them stores a number of
“patterns”. All the patterns in all the chips are compared in parallel to the data coming from the detector while the detector is being
read out.
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« CAM = a memory that is accessed by its contents, not
its location.

 E.g., while in a RAM we ask:

- what do you have in location xyz?

* In a Content Addressable Memory (CAM) we ask:

- Are there any locations holding the value abc?
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 Binary CAM (simplest):

— uses search words consisting entirely of “1” and “0”

Example:

stored word of = —mmemmmmmeeeeeo > "10110" (“one pattern”)
It will be matched by the search word: "10110" (“the data”)
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=] faofe B & m Hom
Rl el el

{6,6, 7,7} Patt 1L L1=FF| [12 |={Ff| [14 [=Ff |15

w

ro Layer 1 Layer2 Layer 3
ONE PATTERN I ﬁ

et
o
| ]

..01100  [..0111] .. -(15/ =[] [17 }=[r] [18 |=[F] [2

Y
T
vy v e

Patt 3| |IFF -

!
!

4 4 i 4

HIT HIT HIT HIT
LayerO Layerl Layer2 Layer3
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Layer O Layer 1 Layer2 Layer 3

ONE PATTERN
ﬁmo{«eﬁ e Rl
=e=| | »
{6,6, 7,7} Patt 1L LL=FF| (12 [»={rf| |14 | =FF| [ 15}
! + oyl
0110 0111 1 17 18 50 S
patt 2015k [17 =[] (18 }={r] [20B=fr] [2
' i ! S
Patt 3 —=FF — | FF —= FF —=- FF
As soon as data * ' )-
are present from A A A A
each Layer, they HIT HIT HIT HIT
are put on the bus, Laygro Layeél Lay§r2 Layer3
to be seen
by all stored words 4 4 4 4
along this bus
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Layer O Layer 1 Layer2 Layer 3

ONE PATTERN
F)ﬂ’rf 0 o *? worb *T ""‘WF’?
| )-
{6,6, 7,7} Patt 1L LL=FF| (12 [»={rf| |14 | =FF| [ 15}
11 A S
i [1I1L] 1111 LI o
...0110 ...0111 patt 20 15F=[rf [17 | =[] [18 |=[rq [20}=frF c
50111 N
Patt 3 —=FF — | FF —= FF —=- FF
As soon as data * ' ' )-
are present from A A A A .
each Layer, they HIT HIT HIT vt Flags raised

are put on the bus, LO Layeél Lay§r2 Layf_r3 if matching
to be seen

by all stored words
along this bus
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Layer O Layer 1 Layer2 Layer 3

ONE PATTERN |
F’uf’r 0 ‘5‘34’*? wodl *T -
S 3
{6,6,7,7}  port 1A11D)=lF] [12 [=[rd (14 |=[r [15}=lF
11 A S
il LI 11111 11 S
...0110 ...0111 patt 20 15F=[rf [17 | =[] [18 |=[rq [20}=frF c
; ¢ ; ) |7
Patt 3 —=FF — | FF —= FF —=- FF
As soon as data * ' ' )-
are present from A A A |
each Layer, they HIT HIT it Flags raised
are put on the bus, Layerl  Layerz  Laver3 it matching

to be seen

In each hit
by all stored words @ @ 6 @ iIndependently
along this bus ' )
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Layer O Layer 1 Layer2 Layer 3

ONE PATTERN |
[Piff 0 @’*T worfl "o M A-\'C\'\ED !
_ )
{6,6,7,7}  pg+ 1A11)=FF] [12]»[rd [14 | =7 [15B=fF
! : {oylo
...0110 SRR S ARSI & 1 [i?l'L— rFl [18 [=lF [ 200 ?I_
1 + ) |2
Patt 3 —=FF — | FF —= FF —=- FF
As soon as data ; v + )-
are present from A ) A
each Layer, they HIT HIT .r AND all flags
are put on the bus, Layerl Layer2 Layer3 to get a
to be seen complete
by all stored words 11 @ 6 @ pattern
along this bus 12 10 matching.
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Result:
Matched
Patterns

pattern Bus_Layer=0= Bus_Layer=ls= Bus_Layer<d> Bus_Layver=T= =

/\ | “Roads”
nE patte m O Iwit ﬂa-? layer 14’ layer 2

L SEEE i
—h s 1= 1= N [ ;
portayer + | T L ' :
maten rosuts |~ L [ -

,_,.x"'

Flexible input: mnimw'# I% e S

position, time,
objects (e, u, v) HI‘T H‘l‘T HI*T H?T

Pattern matching is completed as soon as all hits are loaded.
Data arriving at different times is compared in parallel with all patterns.
Unique to AM chip: look for correlation of data received at different times.
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f——7E - (90’s) Full custom VLSI chip - 0.7um (INFN-Pisa)
| + 128 patterns, 6x12bit words each, 30MHz
F. Morsani et al., IEEE Trans. on Nucl. Sci., vol. 39 (1992)

Alternative FPGA implementation of SVT AM chip
P. Giannetti et al., Nucl. Intsr. and Meth., vol. A413/2-3, (1998)
G Magazzu, 15t std cell project presented @ LHCC (1999)

Standard Cell 0.18 pum — 5000 pattern/AM chip
SVT upgrade total: 6M pattern, 40MHz
A. Annovi et al., IEEE TNS, Vol 33, Issue 4, Part 2, 2006

AMchip04 —65nm technology, std cell & full custom, 100MHz
Power/pattern/MHz ~30 times less. Pattem density x12.

First variable resolution implementation!
F. Alberti et al 2013 JINST 8 C01040, doi:10.1088/1748-0221/8/01/C01040

[ FTK R&D J
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AM chip for FTK AMchip06

90°s Full custom VLSI chip - 0.7mm (INFN-Pisa) 128 patterns,
6x12bit words each (F. Morsani et al., The AMchip: a Full-custom
MOS VLSl Associative memory for Pattern Recognition, IEEE
Trans. on Nucl Sci.,vol. 39, pp. 795-797, (1992).)

i 10811

P 1998 FPGA for the same AMchip (P. Giannetti et al. A
Programmable Associative Memory for Track Finding, Nucl. Intsr.
and Meth., vol. A413/2-3, pp.367-373, (1998) ).

P 1999 G. Magazziy, first standard cell project presented at LHCC
P 2006 Standard Cell UMC 0.18 pom 5000 pattern/AMchip for CDF
SVT upgrade total: 6M patterns (L. Sartori, A. Annoviet al, A VLSI

Processor for Fast Track Finding Based on Content Addressable
Memories, [EEE TNS, Vol 53, Issue 4, Part 2, Aug. 2006 )

g AR

P 2012 AMchip04 8k patterns in 14mm2, TSMC 65nm LP
technology Power/pattern/MHz 40 times less. Pattern density x12.

First variable resolution implementation. (F. Alberti et al 2013
JINST & C01040, doi:10.1088/1748-0221/8/01/C01040 )

> | 2013-2014 AMchip MiniAsic and AMchip05

a further step towards final AMchip version.
Serialized input and output buses at 2 Gbs, further
power reduction approach. BGA 23 x 23 package.

> 12014-2015 AMchip06: final FTK version of the
AM::mp for the ATLAS experiment .

b

e
FTK-AMCHIPOS
‘H-EE

AMch|p06 the FTK AM chip has 128k patterns/chlp
AMchip08: the HTT AM chip will have ~400k pat/chip

ASICs: show yesterday from Alessandro Marchiano
that it's a huge effort to design and make such a thing
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Photomultipliers

Position: z
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For example, task = Associate the measured X1 and X2:
e.g.,X1=5 with X2=8

AN

X2

O

Squares represent all possible patterns
in the (X1,X2) phase-space
*** This is the “pattern bank”

-~

RPNW,A,OONN

12 3456789

PATTERN MATCHED:
(X1,X2)= (5,8)

>
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2b.
Now that we have a system that
does pattern matching as the data
are coming in,

storage problem: how do we deal

with the number of patterns which

can be big in the high-granularity
detectors?
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Wide patterns Thin patterns

[ L]
[ L]
[ ||
[ ] []

The choice is a compromise

High efficiency More patterns (hardware)
with less patterns (hardware) for same efficiency less fakes I
BUT more fakes Fakes are workl for track fitter ™

Recall: the number of patterns Np, with m layers, of n bins each, is Np:(m—l)n2
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<# matched patterns/event @ JE34> = 342

<# maitc

Pattern size Reduce Pattern size (half size)
«© r-¢: 24 pixels, 20 SCT strips pattern r-¢: 12 pixels, 10 SCT strips
0 : : ; :
O z: 36 pixels - z: 36 pixels
% N Size .
:. E LS — = e .
ST oo - — 90%
8 2 Coverage: pattern efficiency ::
x> Efficiency: track efficiency i
L % 05
O o= b
< 0.4 Coverage 0.4 Coverage
é g 03f — Efficiency 03] cfficiency
E : 0z 02"
oo 0.1 0.1
|:' g . I 200 300 400 - % 200 e e ey
{ - BSM Bank size (per region) Bank size (per region)

ed patterns/event @ 3E34> = 40k

# roads (large fake fraction) represents

e workload for the track fitter
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Use the feature of “ternary CAMs”
« Ternary CAM: added flexibility to the search

- allows a third matching state of "X" or "Don't Care" for
one or more bits in the stored pattern word: one
pattern matches various data words

« Example: a ternary CAM might have a

stored word of = -eeooeooeoeo > "10XXO0" (“one pattern”)

This will match any of 4 search words: "10000" (“the data”)
"10010" (“the data”)
"10100" (“the data”)
"10110" (“the data”)

The added flexibility comes at additional cost:

- the internal memory cell must now encode three possible
states instead of the two of binary CAM. This additional
state is typically implemented by adding a mask bit
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Alberto Annovi
* ANIMMA - A new “Variable Resolution Associative Memory” for High Energy Physics

ATL-UPGRADE-PROC-2011-004, doi:10.1109/ANIMMA.2011.6172856
* “Variable resolution Associative Memory for the Fast Tracker ATLAS upgrade”, ICATTP 2013

+ For each layer: a "bin” is identified by a number with DC bits (X)
+ Least significant bits of “bin” number can use 3 states (0, 1, X)
* The "bin” number is stored in the Associative Memory

« The DC bits can be used to OR neighborhood high-resolution bins,
which differ by few bits, without increasing the number of patterns

Pixels:

e

Using binary format
o 1 ENIEM 4 ﬂ- A A
8 9 m 12 13 “0001x” selects bins 2 or 3

“1x000” selects bins 16 or 24
m R N e “Ox11x” selects bins 6,7,14, or 15

m 25 26 27 ---- \_“111xx” selects bins 28 to 31 Y,
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- Majority Logic: Only require N out of M layers have a match
- Gains efficiency

- Variable Resolution Patterns (Don’t Care Bits)

With 2 DC bits: Apart from reduction in fakes (factor 7),
we save also a factor 5 in the size of the pattern bank!

No variable resolution: 1 bit variable resolution: 3 bit variable resolution:
3 patterns needed 1 pattern needed 1 pattern with lflﬁth volume

= 1

/)
Technique can be exploited by any coincidence based trigger!

T

Alberto Annovi
* ANIMMA - A new “Variable Resolution Associative Memory” for High Energy Physics
ATL-UPGRADE-PROC-2011-004, doi:10.1109/ANIMMA.2011.6172856
| F Varlable resolut/on Associative Memory for the Fast Tracker ATLAS upgrade”, ICATTP 2013



3.
S0, we have found possible tracks (the
matched patterns)

Each matching pattern defines a “road”
for the refined tracking

\
fetch all the (few now) hits in the road

\
fit them to a helical track to measure
the track parameters precisel
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* Pattern recognition
layers
» 8 layers track fit
e full resolution hits

SCT layers

g B2 2 S

* reject most fakes

5 parameters &
do, z0, eta, phi, PT, ¢ Hit coordinate

( Full resolution hits (local to each

detector module) | |

N
< Q. [ ]
Pi = Z Cizi + qi
=1 IBLI | | .
Track fitting in FPGAs w/ many Digital Signal Processors (DSPs)

BUT: Linear approximation: get a set of linear equations
“each parameter depends linearly on the hits” — fast

multiplications with pre-computed constants ~1 Gfits/s per FPGA
# constants in memory & speed of retrieval limiting factor

52



* Pattern recognition
layers

» 8 layers track fit

e full resolution hits

* reject most fakes

» Extrapolate track to
other layers I

 Look for hits in a
narrow region

* Full 12 layer fit -

SCT layers

¢ S £ £

Pixels

IBL

Done on FPGASs, on a “2nd stage” board
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* Constants can be coefficients in Taylor expansions,
Fourier series, etc. e.q.,

- sin(x) = Taylor expansion gives a polynomial to
calculate sin(x)~x—x*/6+x/120

* Or, use Look-Up Tables (LUTs = precalculated values
stored in tables) — interpolate between stored values to
get value of sin(x) you ask for :

[l

. function lookup sine(x) 0 T [ T
' x1 1= floor(x*1000/pi)
: yl := sine table[x1]

. y2 := sine table[x1+1]
:
[

return yl + (y2-yl)*(x*1000/pi-x1)
Linear interpolation on a
portion of the sine function
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FTK : working configuration

. : ] DC bits group detector
» High resolution patterns: (15x36),,,X16 channels together and

— Pixels: 15 channels along ¢, 36 ch. along n increase the pattern
— Strips: 16 strips resolution

« Background events with 69 superimposed pp collisions
— Instantaneous luminosity 3*1034 Hz/cm?2

« Hardware constraints (for each of 64 n-¢ towers)
— # AM patterns < 16.8 * 10°
— #roads/event <16 * 10°
— #fits/event <80 * 10° Work loac| for track fitter
-t ___
#AM Efficien roads/ fits/evt™

pattern cy % evt *10° 10°
*106

16.8 93.3% 3.2 26
16.8 91.2% 6.9 99

Coarse Max #

resolution DC bits
roads I layer

Barrel  (30x72),,X32:,  2,X st
Endcap (30x72),,X32:y 2,;X 1

Alberto Annovi
* ANIMMA - A new “Variable Resolution Associative Memory” for High Energy Physics
ATL-UPGRADE-PROC-2011-004, doi:10.1109/ANIMMA.2011.6172856 -
| * “Variable resolution Associative Memory for the Fast Tracker ATLAS upgrade”, ICATTP 2013 s5g



FTK Technical Design Report (TDR): https://cds.cern.ch/record/15529537In=en
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/UPGRADE/CERN-LHCC-2013-007/index.html

HTT described (some changes since then) in:
ATLAS Trigger and Data Acquisition Phase-ll Upgrade Technical Design Report.

Tech. rep. ATL-COM-DAQ-2017-185. https://cds.cern.ch/record/2296879

FTK Public results: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/FTKPublicResults
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The road to FTK: Content Addressable
Memory, the Associative Memory & FPGAs

K. Pagiamtzis and A. Sheikholeslami, “Content-addressable
memory (CAM) circuits and architectures: A tutorial and survey,’
in IEEE Journal of Solid-State Circuits, vol.41, no.3, pp. 712-727,
March 2006

« M. Dell'Orso and L. Ristori, "VLSI Structures Track Finding", Nucl.
Instr. and Meth. A, vol. 278, pp. 436-440, 1989.

« W. Ashmanskas et al., "The CDF online Silicon Vertex Tracker",
Nucl. Instr. and Meth. A, vol. 485, pp. 178-182, 2002.

 A. Annovi, et al., “Associative memory design for the Fast TracK
processor (FTK) at ATLAS,” in IEEE NSS/MIC, 2009, Orlando, pp.
1866 - 1867.

 C.-L. Sotiropoulou, S. Gkaitatzis, A. Annovi, et al. “A Multi-Core
FPGA-based 2D-Clustering Implementation for Real-Time Image
Processing”, in IEEE Trans. on Nuclear Science, vol. 61, no. 6, pp.
3599 - 3606, December 2014.

’
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https://cds.cern.ch/record/1552953?ln=en
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/UPGRADE/CERN-LHCC-2013-007/index.html
https://cds.cern.ch/record/2296879
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/FTKPublicResults

From the FTK to the future

 FTK uses the AMchip06, an Associative Memory with

- 128k patterns of 8 words x 18 bits each word
- high speed serial links

- variable resolution (up to 6 ternary bits)

- low power

- 8 X 16 bit comparisons at 100 MHz

* Future applications in HEP: the ATLAS Hardware Track
Trigger (HTT) will use an AM chip with many more
patterns (~400k patterns/chip).

- Applications outside HEP (medical imaging, smart
cameras, genomics, ...)
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« Split the problem in a fast (coarse) one, and a refined one
working with much reduced data.

(you know now that we do this all the time in the trigger)

* Use pre-calculated patterns & values wherever you can: if
you get the desired precision, you gain a lot in time

...And time is precious in the online world!

 We saw the example of the Fast TracKer upgrade in ATLAS,
using

- AM-based pattern matching with “AM chip” (ASIC),

- refined track-fitting and almost everything else
needed (from formatting to smart databases, to 1/O)
in powerful modern FPGAS (recall Hannes Sakulin’s &
Manoel Barros Marin’ talks)
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C. Other examples, mainly CMS
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Other examples

 What was presented here is not the only way to solve the
tracking problem fast. Other solutions exist, e.qQ:

- Hough transforms in FPGAs,

— Other algorithms in FPGAs (e.qg., Retina algorithm:
Luciano Ristori, NIM A 453 (2000) pp. 425-429 )

- GPUs for the HLT farms etc.... (= You heard from
Gianluca Lamanna on Wednesday)

 But nothing can be as fast as doing the tracking while
reading your data, as they pass through the system.

- If you can not afford to be slower, then you'll probably use an
Associative Memory.

- For commercial solutions (e.qg., CPUs, FPGAs, GPUs, etc). can
overcome slower speed with high parallelism - it's all a
matter of cost at the end...
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Tracking at HEP in the future:
AM+FPGAs, FPGAs, CPUs, and GPUs

V. Halyo, et. al., “GPU Enhancement of the Trigger to Extend Physics
Reach at the LHC,” Journal of Instrumentation 8 P10005, 2013.

 C. Gentsos, F. Crescioli, P. Giannetti, D. Magalotti, S. Nikolaidis, “Future
evolution of the Fast TracKer (FTK) processing unit”, PoS (TIPP2014)
209

 A. Annovi, et al., “Associative Memory for L1 Track Triggering in LHC
Environment,” in IEEE Trans. on Nuclear Science, Vol. 60, No. 5, pp.
3627 - 3632, 2013.

 G. Hall, et al., “A time-multiplexed track-trigger for the CMS HL-LHC
upgrade”, in NIM A, Vol.824, 11 July 2016, pp. 292-295

 A. Abba et al., “Simulation and performance of an artificial retina for 40
MHz track reconstruction”, in JINST 10 C03008 (2015)

HighLuminosity-LHC (HL-LHC): pile-up of ~140 events/crossing
will be typical; up to 200 events per crossing are considered

likely. At L1: need tracking in <10 ps
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« ~99% of tracks have P+ < 2 GeV/c;
interesting things have higher P+

Pass Fail

traCkS. Il_z _— Upper Sensor
* CMS makes the detector itself | ~200
selective on such tracks by finding e o S
track “stubs” on closely spaced g
layers
« At B=4 Tesla, you have for each stub
(straight line) of angle ¢, at some 0= +0.006 g
_ 0

double layer at a radius r, originating o
from a track generated with ¢, and P
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* This ¢@(r) behaviour is a straightline: @ =mr + c

- S0, could do a “Hough transform”: map individual {r, ¢}
measurement points to a whole-line characteristic in 2D
space: the slope (m) & the intercept (c)

- Given an {r,¢} pair, try values form, getc: c=-mr + @

and put {m,c} in a 2-dimensional histogram
i o « {r,} measurements from same
track will populate same {m,c}
bin
i = « Most populated bin =
characterises whole track
T® m * Note: Small [m| values:
Im| = 0.006/P;+ = |[m| < 0.003
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Track trigger example at CMS with FPGA-only

* This ¢@(r) behaviour is a straightline: @ =mr + ¢

— S0, could do a “Hough transform”: map individual {r, ¢}
measurement points to a whole-line characteristic in 2D
space: the slope (m) & the intercept (c)

- Given an {r,¢} pair, try values form, getc: c=-mr + ¢

and put {m,c} in a 2-dimensional histogram
C

<+ +—

 {r,@} measurements from same
track will populate same {m,c}
o bin
* Most populated bin =
i characterises whole track
12 m * Note: Small |m| values:
Im| = 0.006/P+ - |m| < 0.003

Pileup events: {m,c} array heavily populated and such peaks are not initially
prominent.

But, by requiring e.q., all stubs in the (m,c) histogram bin to be from different
radial layers, significantly reduces the background
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Hough transform

P. V. C. Hough, “Method and means for recognizing complex
patterns,” U.S. Patent 3,069,654, 1962.

« R. O. Duda and P. E. Hart, “Use of the Hough transformation to
detect lines and curves in pictures” Communications of the ACM,
vol. 15, no. 1, pp. 11-15, 1972.

* J. lllingworth and ]. Kittler, “The Adaptive Hough Transform”, |IEEE
Trans. On Pattern Analysis and Machine Inteligence, Vol PAMI-9,
No. 5, Sept. 1987, pp. 690-698.

« Xin Zhou, Yasuaki Ito, and Koji Nakano. “An FPGA Implementation
of Hough Transform using DSP blocks and block RAMs.” Bulletin of
Networking, Computing, Systems, and Software, Vol 2, No 1
(2013), pages 18-24.

...etc....

« On FPGAs: important to adapt the algorithms to the
constraints of FPGA operation. Algorithms can overflow the
capacity of even a very large FPGA because of timing constraints

or routing congestion — last day by Manoel Barros Marin
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CMS approach is “local tracking” in both stages

« What we've seen so faris “global tracking”: all hits available

simultaneously (pattern matching and linear approximation wanted all
hits present to work with the patterns and constants needed).

« “Local tracking” (~progressive tracking): add hits on the way
 Track finding at CMS:

- stubs in adjacent layers form “tracklet seeds” - growth of tracks
by projection to next layers and x? test for adding the stubs

 Track fitting at CMS:

- “Kalmam filter” — project the helix parameters of the tracklet to
next layer, recalculate hit positions based on extrapolation and
observed hits, recalculate and extrapolate helix parameters and
SO on...

E.g, see (and references therein): T. James, “Level-1 Track Finding with an all-
FPGA system at CMS for the HL-LHC"”, arXiv:1910.12668
https://arxiv.org/abs/1910.12668

A. Hart, “Level 1 Track Finder at CMS"” arXiv:1910.06614
https://arxiv.org/abs/1910.06614
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Beyond High Energy Physics applications:
Image processing with pattern matching

 Hough transform is one of the classic techniques used in generic
Image processing to do first an “edge-detection”

* Let's see another interesting example on image perception:

M. Del Viva, G. Punzi, and D. Benedetti. “Information and
perception of meaningful patterns.” PloS one 8.7 (2013): e69154.

“... models describe the initial processing of visual information as the
extraction of a simplified “sketch” based on a limited number of “salient
features” [11], [12], that therefore contains a much reduced amount of
information.”

“We adopt the principle of maximum entropy as a measure of
optimization: we ask what is choice of the pattern set producing the
largest amount of entropy allowed by the given limitations of the
system. We will see that this simple requirement, together with the
imposed strict limitations to the computing resources of the system,
allows to completely determine the choice of the pattern set from the
knowledge of the statistical properties of the input data.”
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Constrain #1: storage
N = number of patterns
Constraint #2: output bandwidth
W = reduction factor
(e.g., W=0.001 - 1/1000
can be selected with this
pattern set)

p = probability that the given
pattern matches the
(sub)image we check

Entropy / unit cost

1) —plog(p)

~max(1/N.p/
unit cost for each
pattern
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Number of patterns/freq unit

ISOTDAQ2020

* In a 3x3 grid:

- 512 possible patterns
e Green:

- the “best” 50 of them

(use them in the
Images below)

o t J . ¢ Blue.

—.:-'-_' -\."":1.."
- - ] i r 1
- C B, = T e L =

R RAWARS - the “best” 15 of them
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Our tracking detectors also produce “images” (= the set of hits),
and we select events based on them

a b

.
o

L
=

For N=50 and W=0.15
These are the best patterns to use

Number of patterns/freq unit
> 8

i
10 8 -6 -4 -2 0
Log(p)

o

Of course, we know that all these zig-zag lines are meaningless
Training on simulated events, to get the patterns with max. entropy,
picks up the patterns we also select when we do simulations

to define the pattern bank.
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Summary

 Show that need fast tracking information at the Trigger
of High Energy Physics experiments

 We split the problem into “track finding” (define fast a
“road” where a track can be) and “track fitting” (determine
the track characteristics)

« Show in some detail the ATLAS (FTK and HTT) case, using

- Track finding with Pattern matching in Associative
Memories , and Track fitting in FPGAs

 Basically we saw that: if we want to avoid or cannot afford
calculating something time consuming, we can split the
problem and use pre-calculated patterns and quantities.

« We'll saw also examples of other approaches, with both steps
done in FPGAs. (CMS L1 track finder)

« We'll also saw an example of patterns in image processing
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Extras...
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http://ftk-iapp.physics.auth.gr/

This project aims to develop an extremely fast but compact processor, with
supercomputer performances, for pattern recognition, data reduction, and
information extraction in high quality image processing.

The proposed hardware prototype features flexibility for potential applications in a
wide range of fields, from triggering in high energy physics to simulating human
brain functions in experimental psychology or to automating diagnosis by imaging
in medical physics. In general, any artificial intelligence process based on massive
pattern recognition could largely profit from our device, provided data are suitably
prepared and formatted.

The project has received funding from the

European Union's Seventh Framework Programme for research, technological development

and demonstration under grant agreement n.324318

Participants (2 SMEs and 4 Academic Institutions)
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 D. Emeliyanov, et al., “GPU-based tracking algorithms for the

ATLAS high-level trigger” in Journal of Phys. Conf., Ser. 396,
012018, 2012.

* J. Mattmann, et al., “Track finding in ATLAS using GPUs,” in
Journal of Phys. Conf., Ser. 396, 022035, 2012.

* Y. Ago, Y. Ito, and K. Nakano, “An FPGA implementation for
neural networks with the FDFM processor core approach,”
International Journal of Parallel, Emergent and Distributed
Systems, vol. 28, no. 4, pp. 308-320, 2012.
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Input Mezzanine card(IM)

+ Data Formatter(DF)

Dual HOLA card clustering

Copy the hit from ID
and send to FTK

IM: Receive the hits and perform

DF: hit sharing and provide pipeline
(the “custom switch” to fan-out hits
to the relevant Processor for this n-

Cluster Core Crate
Finding S
2 PUftower
100 kHz
Event eeee
Rate
Second Stage Fit (4 brds) ~
¥
Track Data :
A ROB FLIC _—
Raw Data —[FTK ROBS | =HLT
ROBs FProcessing

* Red: involvement of the group

Processor Units: Auxiliary card(AUX) +
Associative Memory Board(AM)

AM: pattern recognition in SuperBin
(“SuperStrip”) resolution

AUX: a) mapping between hits and
SupersStrips”,
b) track fitting: pt, n, ¢, dO, zO

Second Stage Board(SSB)

Reduce the fake track using
remaining silicon layers.

FTK to Level?2 Interface Crate(FLIC)

Send track info to HLT
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Input Mezzanine card(IM)

Processor Units: Auxiliary card(AUX) +
Associative Memory Board(AM)

Dual HOLA card :

o ‘ i b pipeline
= lout hits
Ir this n-

Rt

Cluster re Ci
Finding A
2 PUjtower
100 kHz 0006
Event
Rate
Track Data '
L  ros FLIC

"

SGLY/ DRI FTK ROBs|=:HLT
ROBs FProcessing

* Red: involvement of the group
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All boards for the full detector coverage are available at 2018

Vs=7~8 TeV, L=6x10% cm< s, bunch spacing 50 ns

RUN |
~20-25 Ib!
Vs = 13~14 TeV, L ~ 1x10% em?s, bunch spacing 25 ns
ATLAS Upgrade Phase-0
Installation and RUN II
co Start data ~75-100 fb"
taki Full detector } Vs = 14 TeV, L ~ 2x10* cm?s™', bunch spacing 25 ns
limi covera "~ ATLAS Upgrade Phase-I
coverage. RUN I
~350 iy!
= ev, L=ox cmr=s’, um
Vs = 14 TeV, L = 5x10%cm2 s, luminosity levelling

~ HL-LHC, ATLAS upgrade Phase-Il
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FTK Latency

FTK has enough processing power at L=3x1034cm-2s-1 (operating rate ~60% )

Latency was rise-up by heavy event, but after such an event the latency quickly return to the typical

range.
L=3x1034 MC sample (Z-> @ 100 kHz LVL1 rate.
=200 =TT T e e I e T T = T 7
E [ /_/ - [
Q [
[ > 07
| LIJ :
a0 ‘
0F
20} 1
10 [L|h|’\'
_ 1+ [
D:nn 1 1 1 1 1 1 1 1 1 1 1 1 ﬂ-n |I|||I|||I|||I|||I—5ﬂEJIJ1EL_|]_[ﬂﬂﬂ|FHITu||
0 200 400 600 800 1000 0 20 40 60 80 100 120 140 160 180 200
Event number Latency (u sec)

Averagely latency is ~50 usec and maximum on tail is ~ few handed usec. It is enough
speed for HLT requirement.



Efficiency w.r.t. Offline

FTK Track performance

All results are base line of FTK performance!

—

_I | T TTT | T TTT | T TTT | T T TT | T T TT | T T TT | TTTT | TTTT IL.ILI E 3 DOD4_—I | T T T | T T T | __
0.95;— #ﬁ*ﬁi :*: —+— D G- DO 00355 ATLAS Simulation, no IBL =
0.9c-® :*: = - F +¢i —+ Offline +ﬁ .
= = 0.003F 4k —
0.85E - - ++ --FTK ke :
0.8 = 0.0025F A e —
- - - -+ i ]
0.75 = 0.002F- e +f =
0.7¢ =3 0.0015F R i =
0.65F = - A . ]
- E 0.001— i i 3
0.6 ——Mmuon = - A e N .
- . E 0.0005F w =
0.55E ~s-pion ATLAS Simulation, no IBL J - bk 1
0 5|:| lvvv v v bv v by bvv e bvv v o bvv s b |:| %_ L L | L | L l ! L L | D L | L ! ! l ! _)(10
~ 0 10 20 30 40 50 60 70 80 90 -0.6 -0.4 -0.2 0 0.2 0.4 0.6
p_[GeV] a/p_ [1/MeV]
Tracks are offline like performahce
Difference is

= Algorism of hit clustering

- Lack of Low Pt patterns

= Broken of linear approximation.

= No TRT, not dray correction, etc

More than 90 % efficiency with respect to offline.
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