Electron Lens Test Stand Introduction

A. Rossi

Status and Future Plans of the Electron Lens Test Stand, 1 July 2019

Electron Lens Test Stand Motivations

The Electron Lens Test Stand was built

- to characterize and test:
 - electron gun and modulator for ARIES project, WP16: Intense, <u>RF</u> Modulated <u>E</u>-Beams (Electron Lenses for Space Charge Compensation)
 - electron gun, modulator, instrumentation (BGC and BMP), control system, infrastructure for HL-LHC WP5: <u>Hollow Electron Lens</u> for Halo Diffusion Enhancement
- to validate simulation codes on e-beam dynamics

ARIES WP16: Intense, RF Modulated E-Beams

- JRA activity with four collaborators: CERN, GSI, IAP, RTU
- Manufacturing of an RF modulated electron gun for application in electron lenses
 - High electron currents ~10A
 - RF modulated at ~5MHz
 - Variable transverse and longitudinal beam profiles
 - Different cathode shapes
- Operation of a test stand for the RF modulated electron gun
 - Normal conducting solenoids for beam transport
 - Capabilities for testing different vacuum chamber geometries
 - Instrumentation for probing transverse and longitudinal electron beam profiles

Electron Lenses for Space Charge Compensation

- GSI:
 - Electron Lens for Space Charge Compensation (SCC)
 - Upgrade of SIS18 to increase intensity
 - Partial compensation of space charge tune spread
 - Bunched ion beams requiring longitudinal e-beam modulation
 - Matching of transverse profile to flat ion beam
 - Electron currents about 10 A
 - Modulation bandwidth about 5 MHz

ARIES

1st Annual Meeting / 23.05.2018 / WP16: IRME / D. Ondreka

SCC Gun with Grid Modulation

 $I_{tot} = 10.7 A$

- Reduced power dissipation over anode modulation ٠
- Losses on grid need to be considered
- Higher extracted currents required (10 A \rightarrow 16 A)
- Heat load on grid estimated to be safe for tungsten
- Tests using a Tungsten prototype foreseen at IAP
- Tungsten cathode and grid received
- Integration into spare volume ion source planned •

Final grid design and simulated beam profile

- Ion source's filament used for indirect heating •
- Preparations under way

SCC Gun Requirements (Preliminary)			
Extracted current	10 A		
Hor./vert. beam size	35 mm/20 mm		
Cathode radius	~30 mm		
Gun solenoid field	~0.5 T		
Extraction Voltage	>25 kV		
Grid voltage	~3 kV		
Dissipated power	~3 kW		
Modulation bandwidth	5 MHz		

Tungsten prototype for heat load tests

Current vs. voltage for three grid designs

ARIES Annual Meetings / K.Schulte-Ulrichs GSI/IAP

Hollow Electron Lens

D. Perini, 8th HL-LHC Collaboration Meeting, CERN, 15-18 October 2018

HEL Parameters		Value or range	
Proton beam optics at HEL	β [m]	280	
Length of interaction	<i>L</i> [m]	3	
Desired transfer scraping radius (3 to 6 beam σ @ ϵ = 3.5µrad.m)	<i>r_{e-beam}</i> [mm]	1.1 – 2.2 @ 7TeV 4.3 – 8.6 @ 450GeV	
Electron beam current	/ [A]	5	
Cathode radius	r _{cathode} [mm]	4 – 8	
Gun extraction and modulation voltage (cathode-anode)	[kV]	10	
Acceleration voltage (cathode to ground)	[kV]	15	
Collector voltage	[kV]	In study	
Modulator rise time	[ns]	200	
Modulation repetition rate	[kHz]	35 *	
Magnetic field at gun	[T]	3.45 @ 7TeV / 0.22 @ 450GeV	
Magnetic field at bend	[T]	3.5	
Magnetic field at main	[T]	3 @ 7TeV / 5 @ 450GeV	
Magnetic field at collector?	[T]	In study	

* See Sergey's presentation for more details on modulation

HEL Magnetic Configuration and Beam Size

Cathode \oslash ~8-16 mm

HEL – New configuration @ Injection

Danila Nikiforov

HEL – New configuration @ flat top

Current studies for collector design at injection

Collector with additional solenoid magnet (warm 1.5kA!) And repeller electrodes, as proposed by Danila

- Beam too big at collector entrance
- Care to be taken for collector width/depth to avoid magnetic bottle

D. Nikiforov, E-BEAM WG, 29 May 2019

Summary

- The Electron Lens Test Stand is funded by the ARIES and HL-LHC projects.
- Wide range of parameters \rightarrow long integration

Parameters at test stand	SCC	HEL
Electron beam current [A]	10	5
Cathode radius [mm]	15	4 – 8
Gun extraction and modulation voltage (cathode-anode) [kV]	30	10
Modulator rise time	?	200
Modulation repetition rate [Hz]	5M	35k *

• Scope of this meeting: present status of the test stand with geometry and characteristics and tests for the HL-LHC project.

SCC Gun Modulator

- Goals
 - Modulator for grid of SCC gun
 - Full modulation requiring 3 kV at 0.1 A
 - Bandwidth >= 10 MHz
 - Frequency range 0.4 to 1 MHz
- Status @ Y2
 - Improved prototype built for proof-of-concept
 - Signal generator for sweeping different wave forms over frequency range implemented
 - Tests at IAP next week
 - Proof-of-concept experiment (IAP)
 - Modifications to set-up for proof-of-concept experiment for reduced stray capacitances

Work performed by P. Apse-Apsitis, I. Streiks, J. Van De Pol Working prototypes of signal generator and modulator

Frequency sweep of Gaussian double bump profile

