

BGC Tests on HEL Test Stand

J. Glutting, G. Schneider, <u>R. Veness</u>

With thanks to

T.Dodington, S.Mazzoni, A.Rossi, A.Salehilashkajani, H.Zhang,

01/07/2019

Contents

- Introduction and status
- The BGC experimental roadmap
- Experimental goals and limitations of the HEL tests
- Installed hardware on the HEL test stand
- Summary

Introduction and Status

- Gas jet diagnostic R&D funded by HL-LHC as part of UK-HL collaboration
 - 2 instrument deliverables with tests and personnel
 - First deliverable (called v2) is built and being tested at Cockcroft Institute (CI) with a 0.65 mW/5 keV CW electron gun
 - Second instrument (v3), designed for LHC installation, will be delivered early 2020, with Phase 1 integrated directly in LHC
 - This is the instrument we will install on the HEL test stand
 - Latest details from BGC collaboration meeting [*] held 2 weeks ago at CI
 - CI have submitted proposal for phase II production in-kind
- Background gas experiment in the LHC
 - An optical system, observing the existing BGI background gas injection system in the LHC was approved and installed in the LHC in YETS 17/18
 - This took data for protons and heavy ions at injection and top energy during the 2018 run
 - Very interesting preliminary data will request an upgraded system for run 3, using the v3 interaction chamber

BGC demonstrator v3 design

- Phase 1
 - Interaction chamber
 - BGC supports
 - Optical and geometer supports
 - Optical calibration target
- Phase 2
 - Gas injection
 - Dump
 - Pumping
 - Optics design

BGC demonstrator (V3) Vacuum Layout

BGC experimental roadmap

Summary of experimental goals on HEL test-

- Validating the e- image for the instrument
 - Validating extrapolations from the Cockcroft test programme for higher intensity and signal/noise
 - Studying/mitigating photon noise background from the HEL e-gun
- Interactions with solenoid field
 - Exploring signal distortions from solenoid field (for N2 and Ar)
 - Potential electron trapping and remedies (clearing electrode)
- Validation of the full experimental and vacuum set-up at CERN before LHC installation
 - Operation with the full vacuum control system
 - Injection of background gas (Ne, N2, Ar) allows for benchmarking with CI results

> The ideal HEL test stand will duplicate the final HEL operating conditions as closely as possible

Simulations of expected images for N₂⁺, Ne⁺ and Ar⁺

2D and 1D histograms of the detected photons assuming **ideal gas curtain and optics with unit magnification**. The bin size is 0.15 mm. The 1D histograms are normalized.

(a) No distorsions (b) N_2^+ , $T_{BIF} = 60$ ns (c) Ne⁺, $T_{BIF} = 11$ ns (d) Ar⁺, $T_{BIF} = 9$ ns

The 1D histogram from (a) is reproduced in grey in all the others.

Simulation parameters $B_{sol} = 1 T$

 $I_e = 5 A$ $D_e = 10.5 mm$ $d_e = 7 mm$

 $\begin{aligned} & \langle I_{p} \rangle = 1 \text{ A} \\ & \sigma_{tp} \rangle = 0.3 \text{ mm} \\ & 4 \cdot \sigma_{lp} \rangle = 1.01 \text{ ns} \\ & N_{\gamma}^{e} &\approx 12500 \\ & N_{\gamma}^{p} &\approx 250 \end{aligned}$

Such simulations should be performed with a realistic gas curtain too for a better reproduction of the image to be expected.

GSI

E-Lens Collab. Meeting, Nov. 27th, 2018

HEL test stand constraints

- 5 A intensity, but initially limited to 2x10e-4 duty cycle (limited by collector/YAG screen)
 - Camera (and even gas) can be gated, so signal/noise will be an improvement on the CI test stand
 - However, integrated intensity is 1 mA cf. 0.65 mA at CI, so data integration times will not significantly improve
 - Would like to push duty cacle as close as possible to HL operating conditions
- Geometry of gun and solenoids is different from the final design
 - Can make some tests for photon background and mitigation (masking/blackening of surfaces)
 - Would be interesting to move the HEL to a distance from the gun that is close to the final design
 - We could make preliminary tests for electron trapping, but would need simulations too

BGC On HEL test design (Preliminary!)

HEL Test specific

- Complete re-design of
 Interaction chamber
- Support System
- Valves?

BGC V3 Interaction chamber to be redesigned for HEL

Summary

- BGC v3 is planned for installation on the HEL test stand in summer 2020, with test programme window upto end of 2021
 - Will need design/production of a dedicated interaction chamber
- Basic test objectives are identified
 - This is being iteratively developed between HEL and BGC
 - Personnel for testing would also be available with a successful UK-HL Phase II in-kind collaboration
- There are some limitations for the HEL test stand WRT final HEL
 - These need to be clearly identified (ultimate test stand vs. installed HEL) and mitigations put-in-place
 - Will there be testing on the final HEL before installation?
- This HEL test stand will be an important step for the qualification of the 'High intensity hollow e-beam' part of the BGC performance

Backup slides

BGC tests on the HEL test stand

BGC HEL study inner beam line

- Significant space constraints
- Highly optimised design
- Challenging assembly

BGC Laboratory Design use at Cockcroft

