

CERN IT Department

CERN-IT Plans on Virtualization

Ian Bird
On behalf of IT

WLCG Workshop, 9th July 2010

Multi-core jobs at CERN

- Multi-core jobs can be run on the CERN batch service:
 - Dedicated queue "sftcms"
 - dedicated resources
 - 2 nodes with 8 cores, one job slot each
 - Can be extended on request
 - access restricted to pre-defined users
 - Currently 12 registered users defined to use the queue
 - Service is in production since February 2010
 - But has hardly been used yet

CERN IT Department CH-1211 Genève 23 Switzerland www.cern.ch/it

Multi-core jobs Grid-wide

- EGEE-III MPI WG recommendations
 - Current draft at http://grid.ie/mpi/wiki/WorkingGroup
 - Final version to appear soon
- Next steps
 - 1. Validate new attributes in the CREAM-CE:
 - Using a temporary JDL attribute (CERequirements)
 - E.g. CERequirements = "WholeNodes = \"True\"";
 - Using direct job submission to CREAM
 - Validation starting with some user communities
 - Modify CREAM and BLAH so that the new attributes can be used as first-level JDL attributes:
 - E.g. WholeNodes = True;
 - Coming with CREAM 1.7, Q3 2010
 - 3. Support for the new attributes in WMS
 - Coming with WMS 3.3, Q3 2010

Virtualisation Activities

- In many areas not all directly relevant for LHC computing
- 3 main areas:
 - Service consolidation
 - "VOBoxes", VMs on demand, LCG certification testbed
 - "LX" services
 - Worker nodes, pilots, etc (issue of "bare" WN tba)
 - Cloud interfaces

Rationale:

- Better use of resources optimise cost, power, efficiency
- Reduce dependencies esp between OS and applications (e.g. SL4
 → SL5 migration), and between grid software
- Long term sustainability/maintainability > can we move to something which is more "industry-standard"?
- + don't forget WLCG issues of how to expand to other sites
 - which may have many other constraints (e.g. may require virtualised WN)
 - Must address trust issue from the outset

Service consolidation

- VO Boxes (in the general sense of all user-managed services)
 - IT runs the OS and hypervisor; user runs the service and application
 - Clarifies distinction in responsibilities
 - Simplifies management for VOC no need to understand system configuration tools
 - Allows to optimise between heavily used and lightly used services
 - (eventually) transparent migration between hardware: improve service availability
- VMs "on demand" (like requesting a web server today)
 - Request through a web interface
 - General service for relatively long-lived needs
 - The user can request a VM from among a set of standard images
 - E.g.:
 - ETICS multi-platform build and automated testing
 - LCG certification test bed. Today uses a different technology, but will migrate once live checkpointing of images is provided.

CVI: CERN Virtualisation Infrastructure

- RN**|T** Department
- Based on Microsoft's Virtual Machine Manager
 - Multiple interfaces available
 - 'Self-Service' web interface at http://cern.ch/cvi
 - SOAP interface
 - Virtual Machine Manager console for Windows clients
- Integrated with LANdb network database
- 100 hosts running Hyper-V hypervisor
 - 10 distinct host groups, with delegated administration privileges
 - 'Quick' migration of VMs between hosts
 - ~1 minute, session survives migration
- Images for all supported Windows and Linux versions
 - Plus PXE boot images

CVI: some usage statistics

Today, CVI provides 340 VMs...

70% Windows, 30% Linux

... for different communities

- Self-service portal
 - 230 VMs from 99 distinct users
 - Mixture of development and production machines

- Engineering Services: 85 VMs
- Media streaming: 12 VMs
- 6 Print servers, 8 Exchange servers
- ... etc

CVI: work in progress - II

- Consolidation of physics servers (IT/PES/PS)
 - a.k.a "VOBoxes"
 - ~300 Quattor managed Linux VM's
 - IT servers and VOBoxes
 - 3 enclosures of 16 blades
 - Each with ISCSI shared storage
 - Failover cluster setup
 - Allows transparent <u>live</u> migration between hypervisors
 - Need to gain operational experience
 - Start with some IT services first (e.g. CAProxy, ...)
 - Verify that procedures work as planned
 - Target date for first VOBoxes is ~July 2010
 - gain experience with non-critical VOBox services first
 - Next step: Virtual small diskservers (~ 5TB of storage)
 - By accessing iSCSI targets from VM's

"LX" Services

LXCloud

- See presentation of Sebastian Goasguen + Ulrich Schwickerath at workshop
- Management of a virtual infrastructure with cloud interfaces
- Includes the capability to run CernVM images
- Scalability test are ongoing
- Tests ongoing with both Open Nebula and Platform ISF as potential solutions

LXBatch

- Standard OS worker node: as VM addresses dependency problem
- WN with a full experiment software stack
 - user could choose from among a standard/certified set. These images could e.g. Be built using the experiment build servers.
- As the previous case but with the pilot framework embedded
- CERNVM images
- Eventually: LXBatch → LXCloud

Evolution

	Today	(SLC = Scientific Linux CERI
	Batch	
		Physical
SLC4 WN		SLC5 WN

Near future:

	Batch				
SLC4 WN SLC5 WN	Physical	Physical SLC5 WN			
hypervisor cluster	SLC4 WN				

(far) future ?

Batch	T0	development	other/cloud applications			
Internal cloud						

LXCloud

CERN's Ixcloud architecture

- Image repository with Golden nodes.
- VM instances not quattor managed have finite lifetime
- Specific IP/MACs are pinned to hypervisors
- Currently testing two provisioning system:
 Opennebula and

Opennebula and Platform ISF.

CERN IT Department CH-1211 Genève 23 Switzerland www.cern.ch/it

Ongoing work

- Integration with existing management infrastructure and tools
 - Including monitoring and alarm systems
- Evaluating VM provisioning systems
 - Opensource and commercial
- Image distribution mechanisms
 - With P2P tools
- Scalability tests
 - Batch system (how many VMs can be managed)
 - Infrastructure (network database, etc.)
 - Image distributions
 - VM performance
- To be understood:
 - I/O performance, particularly for analysis jobs
 - How to do accounting etc.
 - Virtualised infrastructure vs allocate "whole node" to application

CERN IT Department CH-1211 Genève 23 Switzerland www.cern.ch/it

Building a Cloud: Interoperability Map

Innovation in Cloud Computing Architectures

Summary

- Ongoing work in several areas
 - Will see benefits immediately (e.g. VOBoxes)
 - Will gain some experience in (e.g. LXCloud) test environment
 - Should be able to satisfy a wide range of resource requests no longer limited to the model of a single job/cpu
- Broader scope of WLCG
 - Address issues of trust, VM management; integration with AA framework etc.
 - Interoperability through cloud interfaces (in both directions) with other "grid" sites as well as public/commercial providers
 - Can be implemented in parallel with existing grid interfaces

