Measurements of differential Z boson production cross sections in pp collisions with CMS at $\sqrt{s} = 13 \text{ TeV} \text{ (SMP-17-010)}$

Guillelmo Gómez-Ceballos (MIT)

LHC EW Precision Sub-group Meeting

July 2019

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つへで

Introduction

- Purpose of the talk is to show a short summary on the differential Z boson cross section measurements using dilepton events
- Making use of full 2016 dataset at $\sqrt{s} = 13 \text{ TeV}$
- Selecting two dimuons or dielectrons compatible with a Z boson decay
 - simple selection
 - very low background level
- ► Fiducial region emulates selection at the reconstruction level
- Measurements: differential and normalized cross sections
 - ▶ *p*^Z_T
 - ► |y^Z|
 - ϕ^{\star}
 - $p_{\rm T}^{\rm Z}$ in $|y^{\rm Z}|$ regions
- Analysis went from a simple 2017 Summer student project to a huge R&D enterprise
 - simple experimental analysis, but requiring an unprecedented precision in CMS

Selection Strategy

- Reconstruction level (RECO):
 - two opposite-sign same-flavor leptons (electrons or muons)
 - "medium" identification & isolation lepton requirements
 - $p_{\mathrm{T}}^{\ell_1,\ell_2} > 25 \,\,\mathrm{GeV}$, $|\eta^{\ell_1,\ell_2}| < 2.4$
 - ► $|m_{\ell\ell} m_{\rm Z}| < 15 \,\,{\rm GeV}$
- Fiducial definition at generation level (GEN):
 - making use of so-called dressed leptons
 - accounting for photons in $\Delta R_{\ell,\gamma} < 0.1$
 - two opposite-sign same-flavor leptons (electrons or muons)
 - $p_{\mathrm{T}}^{\ell_1,\ell_2} > 25 \,\, \mathrm{GeV}, \, |\eta^{\ell_1,\ell_2}| < 2.4$
 - $|m_{\ell\ell} m_{\rm Z}| < 15 \,\,{\rm GeV}$
 - tested that muon and electron cross sections agree better than the sample statistical precision with this definition

Final state	Data	$Z \to \ell \ell$	Resonant bkg.	Nonresonant bkg.
$\mu\mu$	$\sim 20.4 imes 10^{6}$	$\sim 20.7 imes 10^{6}$	$\sim 30 imes 10^3$	$\sim41 imes10^3$
ee	$\sim 12.1 imes 10^{6}$	$\sim 12.0 imes 10^{6}$	$\sim 19 imes 10^3$	$\sim 26 imes 10^3$

Luminosity:

- using current recommended 2.5%
- Lepton trigger, reconstruction & identification:
 - computed "in-house" due to the required precision
 - effects due to the signal and background components taken into account

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つへで

- Momentum scale:
 - relevant on differential measurements
- Background:
 - ▶ VV resonant bkg. from simulation
 - nonresonant bkg. from data
- Data and simulated sample size

Summary of Systematic Uncertainties (Differential)

Summary of Systematic Uncertainties (Normalized)

Inclusive Fiducial Uncertainties

Source	$Z \rightarrow \mu \mu$ (%)	$Z \rightarrow ee (\%)$
Luminosity	2.5	2.5
Muon reconstruction efficiency	0.4	-
Muon selection efficiency	0.7	-
Muon momentum scale	0.1	-
Electron reconstruction efficiency	-	0.9
Electron selection efficiency	-	1.0
Electron momentum scale	-	0.2
Background estimation	< 0.1	< 0.1
Total (excluding luminosity)	0.8	1.4

Cross section	$\sigma \mathcal{B} [pb]$
$\sigma_{\mathrm{Z} ightarrow \mu \mu}$	$694 \pm 6 \; (syst.) \pm 17 \; (lum.)$
$\sigma_{\mathrm{Z} \rightarrow \mathrm{ee}}$	$712 \pm 10 \; (syst.) \pm 18 \; (lum.)$
$\sigma_{\mathrm{Z} \rightarrow \ell \ell}$	$699\pm5~(syst.)\pm17~(lum.)$

 $\sigma_{Z \rightarrow \ell \ell} = 682 \pm 55 \text{ pb} (MadGraph5_AMC@NLO, NNPDF 3.0)$

Data vs. Predictions

- In principle, we could just report our results, but we tried to be pretty generic
- Experimental distributions compared with several theoretical predictions (and more to come):
 - ► MADGRAPH5_AMC@NLO
 - ► POWWEG
 - FEWZ ($p_{\rm T}^Z > 30$), NNLO inclusive
 - $\blacktriangleright \ Z + 1 \text{ jet at NNLO}$
 - ► MINLO
 - ► RESBOS
 - GENEVA
- Data unfolded uncertainties include all experimental effects
- Theory uncertainties include QCD scales and PDF uncertainties
- ► MINLO:
 - before you ask, aware of large theory uncertainties
 - not a mistake, long discussions about it, will use another prescription for the paper

$|y^{\rm Z}|$ Measurements

э

$p_{\rm T}^Z$ Measurements

ϕ^{\star} Measurements

$|p_{\mathrm{T}}^{\mathrm{Z}}$ vs. $|y^{\mathrm{Z}}|$ Measurements

Normalized Measurements

Э

 Reported results on the differential Z boson production cross section measurements using dilepton events

◆□ > ◆□ > ◆三 > ◆三 > ● ● ●

- large effort to improve lepton efficiency uncertainties
- Paper publication in progress
- Read details on https://cds.cern.ch/record/2675022

Back-Up Slides

Unfolding & Binning

Using TUnfold method to perform the unfolding, as officially suggested

- ▶ p_T^Z (in GeV): {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 20, 22, 25, 28, 32, 37, 43, 52, 65, 85, 120, 160, 190, 220, 250, 300, 400, 500, 800, 1500}
- ► $|y^{Z}|$: {0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4}
- $\begin{array}{l} \blacktriangleright \ \phi^{\star}: \ \{1\ \cdot 10^{-3},\ 2\ \cdot 10^{-3},\ 3\ \cdot 10^{-3},\ 4\ \cdot 10^{-3},\ 5\ \cdot 10^{-3},\ 6\ \cdot 10^{-3},\ 7\\ \cdot 10^{-3},\ 8\ \cdot 10^{-3},\ 9\ \cdot 10^{-3},\ 1\ \cdot 10^{-2},\ 2\ \cdot 10^{-2},\ 3\ \cdot 10^{-2},\ 4\ \cdot 10^{-2},\ 5\\ \cdot 10^{-2},\ 6\ \cdot 10^{-2},\ 7\ \cdot 10^{-2},\ 8\ \cdot 10^{-2},\ 9\ \cdot 10^{-2},\ 1\ \cdot 10^{-1},\ 2\ \cdot 10^{-1},\ 3\\ \cdot 10^{-1},\ 4\ \cdot 10^{-1},\ 5\ \cdot 10^{-1},\ 6\ \cdot 10^{-1},\ 7\ \cdot 10^{-1},\ 8\ \cdot 10^{-1},\ 9\ \cdot 10^{-1},\ 1,\ 3,\ 5,\ 7,\ 10,\ 20,\ 30,\ 50\} \end{array}$
- ▶ p_T^Z in $|y^Z|$ regions (in GeV): {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 20, 22, 25, 28, 32, 37, 43, 52, 65, 85, 120, 160, 190, 220, 250, 300, 400, 1500}

- Making use of dressed leptons instead of born level leptons
- Easier way to compare with theory predictions
- Cross sections for electrons and muons agree better than statistical precision of the samples
- Experimental uncertainty due to FSR effects taken into account
- Neglected theoretical uncertainty in the prediction