Fitting $p_{\rm T}^{\rm W}$ and $m_{\rm W}$ at LHCb

Olli Lupton, Mika Vesterinen

University of Warwick

with thanks to W. Barter, S. Farry, R. Hunter and M. Pili for interesting discussions

1 July 2019

- First: very brief recap of LHCb plans for $m_{\rm W}$.
- Then: summary of a toy study showing techniques planned for $m_{\rm W}$ @ LHCb.¹

 $^{^1 \}rm Writeup$ on arXiv soon, $\sim \rm ready$ for a while but held up by other commitments.

$m_{\rm W}$ @ LHCb with $p_{\rm T}^{\mu}$

- LHCb plans¹ presented several times in these meetings, *e.g.* [link] [link] [link].
- In brief, Run 1 + 2 is enough for $\mathcal{O}(10 \text{ MeV}/c^2)$ stat. error and our acceptance is highly complementary to ATLAS and CMS.
- This may allow us to exploit PDF uncertainty anticorrelations in the LHC average. \longrightarrow
- Plans for in-situ constraints of PDF uncertainties described in recent paper. 2

¹G. Bozzi, L. Citelli, M. Vesterinen, and A. Vicini, "Prospects for improving the LHC W boson mass measurement with forward muons", Eur. Phys. J. C75, 601 (2015), arXiv:1508.06954

²S. Farry, O. Lupton, M. Pili, and M. Vesterinen, "Understanding and constraining the PDF uncertainties in a W boson mass measurement with forward muons at the LHC", Eur. Phys. J. C79, 497 (2019), arXiv:1902.04323

- Describing $p_{\rm T}^{\rm W}$ is a major part of a $m_{\rm W}$ measurement, especially with $p_{\rm T}^{\mu}$.
- The $p_{\rm T}^{\rm Z}$ distribution, within experimental acceptance, is well-known from data.
- If predictions of $p_{\rm T}^{\rm V}$ were known up to a set of process-independent and process-dependent nuisance parameters¹, could we determine the process-dependent parameters from the $p_{\rm T}^{\mu}$ distribution simultaneously with $m_{\rm W}$?

¹As suggested by F. Tackmann, for example [link] at this meeting last November.

Nuisance parameter study – overview

- PYTHIA-based: choose α_s and $k_{\rm T}^{\rm intr.}$ as QCD nuisance parameters that shape $p_{\rm T}^{\rm W}$.
 - Better think of this α_s as a PYTHIA tuning knob, not the strong coupling constant.
- Can we disentangle the effect of these parameters on $p_{\rm T}^{\mu}$ from that of $m_{\rm W}$?
- Set up fits where $m_{\rm W}$, α_s and $k_{\rm T}^{\rm intr.}$ are all free parameters in MINUIT to see.

(Spoiler: yes, it works nicely.)

What sort of variations in $p_{\rm T}^{\rm W}$ are we playing with?

• The effect of varying α_s (left) and $k_{\rm T}^{\rm intr.}$ (right) separately is what you might expect.

So, what do the fits look like?

And what do the fits look like?

- Study uses a set of PYTHIA samples using α_s and $k_{\rm T}^{\rm intr.}$ values taken from a 4 × 4 grid.
- Template fits to $p_{\rm T}^{\mu}$, "data" are PYTHIA events from one (α_s , $k_{\rm T}^{\rm intr.}$), templates are reweighted from some other (α_s , $k_{\rm T}^{\rm intr.}$).
- Coloured curves illustrate the effect on $p_{\rm T}^{\mu}$ of $\pm 5\sigma$ variations in $m_{\rm W}$, α_s and $k_{\rm T}^{\rm intr.}$.
- This fit assumes the statistics and fiducial region used in our PDF study. 1
- $(N_{\rm data} \sim 10^7, N_{\rm template} \sim 6 \times 10^7)$
- (Here W⁺/W⁻ are fit together, with shared α_s and $k_{\rm T}^{\rm intr.}$, but it doesn't matter much.)

¹S. Farry, O. Lupton, M. Pili, and M. Vesterinen, "Understanding and constraining the PDF uncertainties in a W boson mass measurement with forward muons at the LHC", Eur. Phys. J. C79, 497 (2019), arXiv:1902.04323

Is everything well-behaved?

- In brief, yes. Pseudoexperiments¹ show unbiased results and correct coverage.
- The plots illustrating that aren't much fun.
- Lots of info from MINUIT, *e.g.* we see that α_s and $k_{\rm T}^{\rm intr.}$ are anticorrelated in the $p_{\rm T}^{\mu}$ fits.
- Also shows the 4×4 grid. Reweighting happily transports template events from one grid point to another despite separation \gg uncertainties shown by the (3σ) ellipses.

¹With slightly reduced statistics.

• Dilution of the statistical precision on $m_{\rm W}$ "blue vs. red" $\mathcal{O}(10\%)$.

• Unsurprisingly, $m_{\rm W}$ less correlated to the nuisance parameters with wider $p_{\rm T}^{\mu}$ range.

"If predictions of $p_{\rm T}^{\rm V}$ were known up to a set of process-independent and process-dependent nuisance parameters, could we determine the process-dependent parameters from the $p_{\rm T}^{\mu}$ distribution simultaneously with $m_{\rm W}$?"

- This study suggests "yes". Obviously, the α_s and $k_{\rm T}^{\rm intr.}$ used here are imperfect proxies for theoretically-robust nuisance parameters from more accurate tools than PYTHIA.
- Clearly the real measurement is more complex: backgrounds, PDF uncertainties, etc.

The quantity α_s used throughout this talk refers to the PYTHIA configuration options TimeShower:alphaSvalue and SpaceShower:alphaSvalue, while the quantity $k_{\rm T}^{\rm intr.}$ is a scale factor applied to the configuration options

$$\begin{split} \texttt{BeamRemnants:halfScaleForKT} &= 1.5 \times k_{\mathrm{T}}^{\mathrm{intr.}},\\ \texttt{BeamRemnants:primordialKTsoft} &= 0.9 \times k_{\mathrm{T}}^{\mathrm{intr.}},\\ \texttt{BeamRemnants:primordialKThard} &= 1.8 \times k_{\mathrm{T}}^{\mathrm{intr.}}. \end{split}$$

The 4×4 grid consists of $\alpha_s \in \{0.120, 0.127, 0.133, 0.140\}$ and $k_{\rm T}^{\rm intr.} \in \{0.5, 1.0, 1.5, 2.0\}$. With the exception of these parameters, the default tuning of PYTHIA 8.235 is used.

Fit technology

- Custom template fit using the Beeston-Barlow-lite method and MINUIT
- **1** Template events (W[±] $p_T/y/m$, p_T^{μ} bin number) are reweighted on-the-fly to the current values of (m_W , α_s , $k_T^{\text{intr.}}$). m_W reweighting is parametric with RBW functor
- 2 ($\alpha_s, k_T^{\text{intr.}}$) reweighting based on ~ 2D histograms of W[±] p_T and y, one from each point on the 4 × 4 grid of PYTHIA samples
- **3** Template events looked up in these $\frac{1}{\sigma} \frac{d^2 \sigma}{d p_{Ty}}$ histograms, giving 16 values
- (1) These values are interpolated with an (n = 2)-dimensional cubic spline to the current working point in $(\alpha_s, k_T^{\text{intr.}})$, weights simple to derive from this
- **5** Template histogram reconstructed, BB-lite metric recalculated *etc.*
- Straightforward to extend to other tools; coincidental that in this study PYTHIA is both generating the events and providing the cross-section histograms
- Similarly, straightforward to include PDF variations via the lookup histograms