'MMHT'19 updates + next steps

Lucian Harland-Lang, University of Oxford LHC EW precision sub-group meeting, CERN, 1 July 2019

MMHT19: datasets

• MMHT14 datasets listed in **1412.3989** (see Simone's slides):

	Data set	LO	NLO	NNLO
	BCDMS $\mu p F_2$ [125]	162 / 153	176 / 163	173 / 163
	BCDMS $\mu d F_2$ [19]	140 / 142	143 / 151	143 / 151
	NMC $\mu p F_2$ [20]	141 / 115	132 / 123	123 / 123
	NMC $\mu d F_2$ [20]	134 / 115	115 / 123	108 / 123
	NMC $\mu n/\mu p$ [21]	122 / 137	131 / 148	127 / 148
	E665 $\mu p F_2$ [22]	59 / 53	60 / 53	65 / 53
	E665 $\mu d F_2$ [22]	52 / 53	52 / 53	60 / 53
	SLAC $ep \ F_2 \ [23, 24]$	21 / 18	31 / 37	31 / 37
	SLAC <i>ed</i> F_2 [23, 24]	13 / 18	30 / 38	26 / 38
	NMC/BCDMS/SLAC/HERA F_L [20, 125, 24, 63, 64, 65]	113 / 53	68 / 57	63 / 57
	E866/NuSea pp DY [88]	229 / 184	221 / 184	227 / 184
	E866/NuSea <i>pd/pp</i> DY [89]	29 / 15	11 / 15	11 / 15
	NuTeV $\nu N F_2$ [29]	35 / 49	39 / 53	38 / 53
	CHORUS $\nu N F_2$ [30]	25 / 37	26 / 42	28 / 42
	NuTeV $\nu N x F_3$ [29]	49 / 42	37 / 42	31 / 42
4]	CHORUS $\nu N x F_3$ [30]	35 / 28	22 / 28	19 / 28
tea	CCFR $\nu N \to \mu \mu X$ [31]	65 / 86	71 / 86	76 / 86
	NuTeV $\nu N \rightarrow \mu \mu X$ [31]	53 / 40	38 / 40	43 / 40
,	HERA e^+p NC 820 GeV[61]	125 / 78	93 / 78	89 / 78
nes	HERA e^+p NC 920 GeV[61]	479 /330	402'/330	373/330
	HERA e^-p NC 920 GeV [61]	158/145	129/145	125/145
	HERA e^+p CC [61]	41 / 34	34 / 34	32 / 34
	HERA e^-p CC [61]	29 / 34	23 / 34	21 / 34
	HERA $ep F_2^{\text{charm}}$ [62]	105/52	72 / 52	82 / 52
	H1 99–00 e^+p incl. jets [126]	77 / 24	14 / 24	
	ZEUS incl. jets [127, 128]	140/60	45 / 60	
	DØ II $p\bar{p}$ incl. jets [119]	125 / 110	116 / 110	119 / 110
	CDF II $p\bar{p}$ incl. jets [118]	78 / 76	63 / 76	59 / 76
	CDF II W asym. [66]	55 / 13	32 / 13	30 / 13
	DØ II $W \to \nu e$ asym. [67]	47 / 12	28 / 12	27 / 12
	DØ II $W \to \nu \mu$ asym. [68]	16 / 10	19 / 10	21 / 10
	DO II Z rap. [90]	34 / 28	16 / 28	16 / 28
	CDF II Z rap. [70]	95 / 28	36 / 28	40 / 28
	ATLAS W^+, W^-, Z [10]	94/30	38/30	39/30
	CMS W asymm $p_T > 35$ GeV [9]	10/11	7/11	9/11
	CMS asymm $p_T > 25 \text{ GeV}, 30 \text{ GeV}[77]$	7/24	8/24	10/24
	LHCb $Z \to e^+e^-$ [79]	76/9	13/9	20/9
	LHCb W asymm $p_T > 20 \text{ GeV}[78]$	27/10	12/10	16/10
	CMS $Z \to e^+e^-$ [84]	46/35	19/35	22/35
	ATLAS high-mass Drell-Yan [83]	42/13	21/13	17/13
	CMS double diff. Drell-Yan [86]		372/132	149/132
	Tevatron, ATLAS, CMS $\sigma_{t\bar{t}}$ [91]–[97]	53/13	7/13	8/13
	ATLAS jets (2.76 TeV+7 TeV)[108, 107]	162/116	106/116	—
	CMS jets (7 TeV) [106]	150/133	138/133	—
	All data sets	3706 / 2763	3267 / 2996	$2717 \ / \ 2663$

MMHT19: datasets

• Since MMHT14, addition of HERA combined described in 1601.03413, and new LHC data in e.g. 1708.00047:

	Points	NLO χ^2	NNLO χ^2
$\sigma_{t\bar{t}}$	18	19.6 (20.5)	14.7 (15.3)
LHCb 7 TeV $W + Z$	33	50.1 (45.4)	46.5 (42.9)
LHCb 8 TeV $W + Z$	34	77.0 (58.9)	62.6 (59.0)
LHCb 8 TeV $Z \rightarrow ee$	17	37.4 (33.4)	30.3 (28.9)
CMS 8 TeV W	22	32.6 (18.6)	34.9 (20.5)
CMS 7 TeV $W + c$	10	8.5 (10.0)	8.7 (7.8)
D0 <i>e</i> asymmetry	13	22.2 (21.5)	27.3 (25.8)
Total	3405 (3738)	4375.9 (4336.1)	3741.5 (3723.7)

• In addition, ATLAS precision W,Z included (1708.00047) and ATLAS, CMS 7 TeV jet data (1711.05757)

MMHT19: datasets

• Further new data added/being added:

\star ATLAS and CMS 8 TeV Z pt.

★ CMS 8 TeV jets (ATLAS - no NNLO K-factors available yet).

★ D0 W asymmetry (replace lepton asymmetry).

 \star HERA combined heavy flavour .

★ ATLAS, CMS 8 TeV differential top (lepton + jet, dilepton).

• Currently work in progress - work actively ongoing to include these, but no complete version yet. Time scale: O(months) for official release, less for unofficial set.

Next steps: few technical comments

• From procedural/time point of view actual running of multiple toy fits not a huge issue (no need for additional manpower), within reason.

• (Probably) most time consuming part: 'just' making sure toy datasets are in the appropriate format (here help producing conversion script etc so that we are provided with everything in our format, would be useful).

• Suspect it will only be for older data that above issue could be relevant (more recent = more unified?).

• My view: first step should be to start with variation of (e.g.) HERA inclusive data alone. Straightforward to do, but still rather constraining (also recalling CT18 and MMHT19 not yet available).