

Binding energy studies of shell closures in exotic nuclei with ISOLTRAP

Maxime Mougeot for the ISOLTRAP collaboration

ISOLDE Workshop and Users meeting, CERN

5 December 2019

Outline:

- Introduction
- Neutron-rich Argon isotopes
- Evolution of *N*=28 shell gap
- Conclusion and perspectives

INTRODUCTION

The nuclear binding energy

• Reflects the interaction of ALL the nuclear constituents

$$M_{nuc}(Z,N) = \frac{Zm_p + Nm_n + E(Z,N)/c^2}{dM_p}$$

Example : Calcium chain

G. Audi et al., Chinese Phys. C 41, 3 (2017) F. Wienholtz et al., Nature 498, 346 (2013) S. Michimasa et al., Phys. Rev. Lett. 121, 022506 (2018)

New features far from stability

G. Audi et al., Chinese Phys. C 41, 3 (2017) F. Wienholtz et al., Nature 498, 346 (2013) S. Michimasa et al., Phys. Rev. Lett. 121, 022506 (2018)

MR-ToF mass spectrometry

Penning-trap mass spectrometry

Neutron-rich Argon isotopes

The vanishing of nuclear shells

• Example: *N* = 20 "Island of Inversion"

ENSDF (2015)

What happens for N = 28?

- Fast reduction of $E2_1^+$ below ${}^{48}Ca$
- Collapse of the N=28 shell-closure

ENSDF (2015)

What happens for N = 28?

- Fast reduction of $E2_1^+$ below ${}^{48}Ca$
- Collapse of the N=28 shell-closure

ENSDF (2015)

Mass measurements of ⁴⁶⁻⁴⁷Ar

Z. Meisel *et al.*, Phys. Rev. Lett. **94**, 022501 (2015).

Mass measurements of ⁴⁸Ar

Mass measurements of ⁴⁸Ar

Evolution of the *N* = 28 **empirical shell gap**

Strength of the *N* **= 28 shell gap**

- Rapid collapse of the N=28 one-neutron empirical shell gap for Z <18
- From Ca to Ar, ~400keV reduction

Z. Meisel *et al.*, Phys. Rev. Lett. **94**, 022501 (2015).

Correlations south of 48Ca

- Multipole energy extracted from calculated g.s
- ANTOINE code using *SDPF-U* interaction

L. Gaudefroy et al., Phys. Rev. C. 81, 064329 (2010)

Theoretical trends

- *SDPF-U* phenomenological interaction –> good agreement
- *VS-IMSRG ab-initio* approach –> also good agreement
- UNEDF0 -> strength of pairing too low

VS-IMSRG in the region

- *VS-IMSRG ab-initio* approach extended down to S
- Predicts erosion of N = 18 shell gap
- Need for more precise mass data below Z < 18

• VS-IMSRG \rightarrow 48Ca (90%), 46Ar(40%) of the g.s

SCGF predictions :

- *ab-initio* calculations using Self Consistant Green's Function
- Two nuclear interactions
- Good agreement with experiment
- Also predicts a reduction of the N=28 shell gap Z < 18

Conclusion

In summary:

- Improved precision for ⁴⁶⁻⁴⁸Ar
- ~ 400 keV reduction of the one-neutron empirical shellgap
- Apparently strong shell gap
- Argon rather a transitional chain
- Ab-initio (VS-IMSRG,SCGF) results in good agreement
- Need for high-precision measurements of isotopes with Z < 18

Acknowledgement:

