β-NMR in liquids

Opening new frontiers for biomolecular studies and nuclear physics

Jared Croese
CERN & University of Geneva
jared.croese@cern.ch
Outline

• β-NMR for biology
• Principles of β-NMR
• Experimental setup
• Measurements & results
• Conclusion and outlook
β-NMR for biology
Advantage over conventional NMR

- 10 billion times more sensitive
- Use probe nuclei with complementary properties
- Real-time observation of chemical reactions

picture courtesy of B. Karg
Principles of β-NMR
Asymmetric β-decay from polarized nuclei
Detection of the resonance by β-decay asymmetry

β-NMR

- Asymmetric β-decay from polarized nuclei
- Detection of the resonance by β-decay asymmetry
Experimental setup
β-detectors & chamber

β-detectors with Si-PMT’s
M. Madurga, Tennessee

PCB shimming coils

Sample ladder

RF excitation coil

Stabilization probe
M. Baranowski, Poznań

Exchangeable collimator

B_0
B₀-field stabilization

- Compact vacuum-compatible pulsed NMR probe
- PID driven variable resistor

From 100 ppm drift to ~1 ppm stability
NMR in liquids

- Molecular tumbling leads to narrow peaks
Measurements & results
• Conventional NMR spectra always relative to a reference
 • (e.g. 0.1 M 23NaCl in D$_2$O)

• References needed for β-NMR
 • Indirect use of conventional NMR reference

\[
\frac{\nu ^{26}_{\text{Na}_{1.2T}}}{\nu ^{1}_{\text{H}_{1.2T}}} \sim \frac{\nu ^{23}_{\text{Na}_{7.05T}}}{\nu ^{1}_{\text{H}_{7.05T}}}
\]

• Use an absolute scale
 • (bare nucleus)
• ppm precise $^{23}\text{Na}/^{26}\text{Na}$ magnetic moment ratio

Indirect reference
Absolute scale: reference

- Accurate magnetic moments needed
 - Diamagnetic correction not accurate (up to 30% off)

<table>
<thead>
<tr>
<th>Method</th>
<th>Literature 23Na magnetic moment$^{[1]}$ (μ_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABMR</td>
<td>+2.217522(2)</td>
</tr>
<tr>
<td>NMR</td>
<td>+2.2176556(6)</td>
</tr>
</tbody>
</table>

- A difference of 134 ppm!

- New ab initio NMR shielding calculations save the day!

<table>
<thead>
<tr>
<th>Method</th>
<th>New 23Na magnetic moment$^{[2]}$ (μ_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABMR</td>
<td>+2.217495(2)</td>
</tr>
<tr>
<td>NMR</td>
<td>+2.217500(7)</td>
</tr>
</tbody>
</table>

- This gives us an accurate reference
 - Combined with ratios leads to accurate moments

Absolute scale: accurate μ_i

- 100 times increase of precision of the magnetic moment of ^{26}Na
- 10 times increase for $^{27-31}\text{Na}$ (from solid state β-NMR)\[^1\]

\[^1\] M. Keim et al. The European Physical Journal A 8, 31 (2000)
R.D. Harding et al. article in preparation
ppm precise magnetic moments

- set of beta-NMR isotopes with ppm precise magnetic moments allow for probing different chemical effects

<table>
<thead>
<tr>
<th>Isotope</th>
<th>I</th>
<th>$T_{1/2}$ (ms)</th>
<th>Q(mb)$^{[1]}$</th>
<th>old μ_I (μ_N)$^{[1]}$</th>
<th>new μ_I (μ_N)$^{[2]}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>23Na</td>
<td>$3/2$</td>
<td>stable</td>
<td>+105.6(12)</td>
<td>-</td>
<td>2.217500(7)a</td>
</tr>
<tr>
<td>26Na</td>
<td>3</td>
<td>1071</td>
<td>-5.3(2)</td>
<td>2.851(2)</td>
<td>2.849378(20)b</td>
</tr>
<tr>
<td>27Na</td>
<td>$5/2$</td>
<td>301</td>
<td>-7.2(3)</td>
<td>3.894(3)</td>
<td>3.89211(11)</td>
</tr>
<tr>
<td>28Na</td>
<td>1</td>
<td>31</td>
<td>+39.5(12)</td>
<td>2.420(2)</td>
<td>2.41843(9)</td>
</tr>
<tr>
<td>29Na</td>
<td>$3/2$</td>
<td>44</td>
<td>+86(3)</td>
<td>2.457(2)</td>
<td>2.45534(8)</td>
</tr>
<tr>
<td>30Na</td>
<td>2</td>
<td>48</td>
<td></td>
<td>2.069(2)</td>
<td>2.06815(5)</td>
</tr>
<tr>
<td>31Na</td>
<td>$3/2$</td>
<td>17</td>
<td></td>
<td>2.298(2)</td>
<td>2.29668(8)</td>
</tr>
</tbody>
</table>

a Corrected $\mu(^{23}$Na) based on NMR experiment
b Based on our improved ratio of the magnetic moments of 26Na to 23Na

- Applicable to:
 - Beta-NMR: Biomolecular studies, Material science & Nuclear Physics
 - Other fields

Summary

- β-NMR up to 10 billion times more sensitive
- Liquid state β-NMR 100 x increased resolution
 - referenced to conventional NMR
 - referenced to an absolute scale.
 - precise magnetic moments
- Interpretation of first biological measurements ongoing. See poster 18 – Kasia
Acknowledgements

R. D. Harding,1, 2 S. Pallada,1 J. Croese,1, 3 A. Antusek,4 M. Baranowski,5 M. L. Bissell,6 L. Cerato,3 K. M. Dziubinska-Kühn,7, 1 W. Gins,8 F. P. Gustafsson,8 L. Hemmingsen,9 A. Javaji,1, 10 R. B. Jolivet,3, 1 A. Kanellakopoulos,8 B. Karg,11 M. Kempka,5 V. Kocman,12 M. Kozak,5 K. Kulesz,1, 3 M. Madurga Flores,13 R. Pietrzyk,5 G. Neyens,8, 1 J. Plavec,12 M. Pomorski,14 A. Skrzypczak,15 P. Wagenknecht,1, 10 J. Wolak,5 F. Wienholtz,1 Z. Xu,13 D. Zakoucky,16 and M. Kowalska1, 3

1 CERN, Geneva, Switzerland
2 University of York, York, United Kingdom
3 University of Geneva, Geneva, Switzerland
4 Slovak University of Technology, Bratislava, Slovakia
5 Adam Mickiewicz University, Poznan, Poland
6 University of Manchester, Manchester, United Kingdom
7 Leipzig University, Leipzig, Germany
8 KU Leuven, Leuven, Belgium
9 University of Copenhagen, Copenhagen, Denmark
10 Oldenburg University, Oldenburg, Germany
11 Greifswald University, Greifswald, Germany
12 National Institute of Chemistry, Ljubljana, Slovenia
13 University of Tennessee, Knoxville, USA
14 University of Warsaw, Warsaw, Poland
15 Poznan University of Technology, Poznan, Poland
16 Czech Academy of Sciences, Rez, Czech Republic
Nuclear Magnetic Resonance

- Nuclear spin ≠ 0
- B0 induces Zeeman effect
- Unequal distribution over magnetic substates (polarization)
- Spins flip due applied RF photons
- Detect emitted RF photon’s
Laser spin polarization

- Polarize atomic spins
- A laser accessible strong atomic transition (strong -> short T1/2)
- Circularly polarized light
- A closed “loop”

Nuclear polarization through hyperfine interaction
VITO Beamline

beam diagnostics
detection chamber
transitional field
optical pumping region
charge exchange chamber
5 degree deflector

electromagnet poles
Helmholtz coils for guiding field