

Contribution ID: 40

Type: Submitted

β-decay studies of neutron-rich indium isotopes: γ-ray emission from neutron-unbound states in 134Sn and 133Sn

Friday 6 December 2019 10:00 (15 minutes)

Simple systems in the proximity of the doubly-magic shell closures constitute the best cases for testing the predictive power of shell-model calculations. In this context, understanding of the nuclear structure in the closest vicinity of the doubly-magic ¹³²Sn is essential before making extrapolations of the nuclear properties towards more neutron-rich nuclei. Recently, it was indicated that in the region southeast of ¹³²Sn nuclear structure effects affect the neutron versus γ ray competition in the decay of neutron-unbound states [1]. β -decay studies of neutron-rich indium isotopes, ¹³⁵In, ¹³⁴In and ¹³³In, provide excellent conditions to investigate such effects since their decays are characterized by large energy windows for the population of neutron-unbound states ($Q_{\beta n} > 10$ MeV). Consequently, states in β , βn and even $\beta 2n$ daughters of indium isotopes can be investigated simultaneously. These nuclei and the n- γ competition following their β decay are also relevant in the framework of the astrophysical r-process since ¹³⁵In is a so-called waiting point [2].

Excited states in ¹³⁵Sn, ¹³⁴Sn, ¹³³Sn and ¹³²Sn were investigated via β decay of ¹³⁵In, ¹³⁴In and ¹³³In at ISOLDE Decay Station. Isomer-selective ionization using the Resonance Ionization Laser Ion Source enabled the β decays of ¹³³gIn (I^{π}=9/2⁺) and ¹³³mIn (I^{π}=1/2⁻) to be studied independently for the first time [3]. Owing to the large spin difference of those two β -decaying states, it is possible to investigate separately the lower- and higher-spin states in the daughter ¹³³Sn and therefore to probe independently different single-particle transitions relevant in the ¹³²Sn region. States having neutron-hole nature were identified in ¹³³Sn at energies exceeding neutron-separation energy up to 3.7 MeV [3]. Due to centrifugal barrier hindering the neutron from leaving the nucleus ($\ell = 4$ or 5), the contribution of electromagnetic decay of those unbound states was found to be significant. The same phenomenon was identified for a new neutron-unbound state observed in ¹³⁴Sn. In addition to the previously known transitions following the β decay of ¹³⁴In [4, 5], we firmly assigned 11 γ transitions to the decay of ¹³⁴In based on parent half-life and γ - γ coincidences with the known γ rays depopulating states in ¹³⁴Sn, ¹³³Sn and ¹³²Sn. β and $\beta 2n$ decay branches of ¹³⁴In have been observed for the first time. Preliminary results of the first β -decay studies of ¹³⁵In will be presented. A comprehensive description of excited states in ¹³⁴Sn, ¹³³Sn and ¹³²Sn was obtained from both β and β n decay branches of indium isotopes.

- [1] V. Vaquero et al., Phys. Rev. Lett. 118, 202502 (2017).
- [2] I. Dillmann et al., Eur. Phys. J. A 13, 281 (2002).
- [3] M. Piersa et al., Phys. Rev. C 99, 024304 (2019).
- [4] P. Hoff et al., Phys. Rev. Lett. 77, 1020 (1996).
- [5] P. Hoff et al., Hyperfine Interact. 129, 141 (2000).

Authors: PIERSA, Monika (University of Warsaw (PL)); KORGUL, Agnieszka Barbara (University of Warsaw (PL)); FRAILE, Luis M (Universidad Complutense (ES)); BENITO, Jaime (Universidad Complutense de Madrid); IS610 COLLABORATION; ISOLDE DECAY STATION COLLABORATION

Presenter: PIERSA, Monika (University of Warsaw (PL))

Session Classification: Low-energy physics