Reaction mechanisms in collisions induced by a ^8B beam close to the barrier

Roberta Spartà
Catania - Italy
Motivation: effects of halo structure on reaction dynamics

Halo nuclei:
small binding energy, low break-up thresholds
coupling to break-up states (continuum) important \(\rightarrow \) CDCC

The n-halo case: e.g. \(^{11}\text{Li},^{11}\text{Be},^{6}\text{He}\)
Motivation: effects of halo structure on reaction dynamics

Halo nuclei:
small binding energy, low break-up thresholds
coupling to break-up states (continuum) important \rightarrow CDCC

The n-halo case: e.g. ^{11}Li, ^{11}Be, ^{6}He

Elastic scattering

$^{11}\text{Be}^{+}\text{64Zn}$ ISOLDE experiment

At low bombarding energy coupling between relative motion and intrinsic excitations important.

Coulomb and nuclear long range absorption effects because of the halo.

The p-halo case: 8B

Weakly bound $Sp=0.137$ MeV (easy to break-up)

Scarce data in the literature.
Only in-flight beams used so far

(ISOLDE has the only ISOL 8B beam)
The p-halo case: 8B

8B+58Ni elastic scattering

Weakly bound $S_p=0.137$ MeV (easy to break-up)

Scarce data in the literature.
Only in-flight beams used so far

(ISOLDE has the only ISOL 8B beam)

Some details of this experiment:

- In-flight produced 8B beam
- Beam divergence = 6°
- Large angular detector opening $\Delta \theta = 12°$
- No particle discrimination
The p-halo case: ^{8}B

Weakly bound $\text{Sp}=0.137\text{ MeV}$ (easy to break-up)

Scarce data in the literature. Only in-flight beams used so far

(ISOLDE has the only ISOL ^{8}B beam)

M. Mazzocco et al. PRC 100 024602 (2019)

Large ΔR with respect to other weakly bound nuclei

Some details of this experiment:

- In-flight produced ^{8}B beam
- Beam divergence = 6°
- Large angular detector opening $\Delta \theta = 12^\circ$
- No particle discrimination
Proposed experiment

Is the total-reaction cross-section enhanced as for n-halo?

CDCC calculations foresee small effects on the elastic cross-section.
Proposed experiment

Is the total-reaction cross-section enhanced as for n-halo?

CDCC calculations foresee small effects on the elastic cross-section.

\(^7\text{Be}, ^8\text{B}+^{64}\text{Zn} \text{ at } E_{\text{lab}} \approx 4.5 \text{ MeV/u}
\text{elastic scattering, elastic and non-elastic break-up cross-sections @INTC 2016, but } ^7\text{Be was not approved}

Angular distribution steps:
- for \(\theta \leq 40^\circ\) at steps of \(\theta \leq 2^\circ\)
- for \(\theta > 40^\circ\) at steps of \(\theta = 3^\circ - 5^\circ\)
Proposed experiment

Is the total-reaction cross-section enhanced as for n-halo?

CDCC calculations foresee small effects on the elastic cross-section.

$^7\text{Be}, ^8\text{B}+^{64}\text{Zn}$ at $E_{lab} \approx 4.5$ MeV/u
elastic scattering, elastic and non-elastic break-up cross-sections @INTEC 2016, but ^7Be was not approved

Angular distribution steps:
- for $\theta \leq 40^\circ$ at steps of $\theta \leq 2^\circ$
- for $\theta > 40^\circ$ at steps of $\theta = 3^\circ - 5^\circ$

^7Be and p in singles + coincidence (first time) → disentangle elastic - non elastic break-up (transfer, incomplete fusion….)

CDCC calculations
Proposed experiment

Is the total-reaction cross-section enhanced as for n-halo?

CDCC calculations foresee small effects on the elastic cross-section.

$^7\text{Be}, ^8\text{B}+^{64}\text{Zn}$ at $E_{\text{lab}} \approx 4.5$ MeV/u
elastic scattering, elastic and non-elastic break-up cross-sections @INTC 2016, but ^7Be was not approved

Angular distribution steps:
- for $\theta \leq 40^\circ$ at steps of $\theta \leq 2^\circ$
- for $\theta > 40^\circ$ at steps of $\theta = 3^\circ$ - 5°

^7Be and p in singles + coincidence (first time) → disentangle elastic - non elastic break-up (transfer, incomplete fusion….)

CDCC calculations

Improvements:
- ^8B post-accelerated ISOL beam
- Large solid angle + high granularity → good angular resolution
- Coincidence measurement
Beam diagnostics

SEC
(inside)
F-cup @ target position
Beam diagnostics

SEC (inside)

F-cup @ target position

DOWNSTREAM (outside)
- F-cup on exit
 - Current measure
 - 2 pepper-pots
 - empty

Manipulator

DE+E Si-telescope

CROSS
2x ISO100
2x ISO160
Beam diagnostics

UPSTREAM (outside)
- F-cup on entrance to chamber
- Current measure
- Different collimators 12, 10, 8 mm

SEC

DOWNSTREAM (outside)
- F-cup on exit
 - Current measure
 - 2 pepper-pots
 - empty

F-cup @ target position

- 6 way CROSS
- Turbo Pump
- DE+E Si-telescope
- CROSS
 - 2x ISO100
 - 2x ISO160

manipulator
Beam diagnostics

UPSTREAM (outside)
- F-cup on entrance to chamber
 - Current measure
 - Different collimators 12, 10, 8 mm

SEC
- F-cup @ target position

DOWNSTREAM (outside)
- F-cup on exit
 - Current measure
 - 2 pepper-pots
 - empty

6 way CROSS
TurboPump

DE+E Si-telescope
CROSS 2x ISO100 2xISO160

12C beam
Telescope A moved at smaller angles (5.5°<θ<23°) using an extension
Gloria

Telescope A moved at smaller angles (5.5°<θ<23°) using an extension

Detection system:

- 2 \(\Delta E_1 - \Delta E_2 - E_{pad} \) telescope \(\theta < 60° \)
- 4 \(\Delta E_1 - E \) Si telescopes at \(\theta > 60° \)

with:

- \(\Delta E_1 \): 40 \(\mu \)m DSSSD detector (16+16 strips)
- \(\Delta E_2 \): 1000 \(\mu \)m DSSSD (16+16 strips)
- \(E_{pad} \): Si PAD detector 1000 \(\mu \)m
- \(E \): 1000 \(\mu \)m DSSSD (16+16 strips)
Geometry determination

detectors geometry definition = main part of the data analysis (precise angle and solid angle evaluation)

long time dedicated to 12C @ 4.9 MeV A on Au (300 μg/cm2 thick)

geometry optimization has been done with a Montecarlo code considering:

- beam spot
- beam offset
- beam angle
Geometry determination

detectors geometry definition = main part of the data analysis (precise angle and solid angle evaluation)

long time dedicated to 12C @ 4.9 MeV A on Au (300 μg/cm2 thick)

graphometry optimization has been done with a Montecarlo code considering:

- beam spot
- beam offset
- beam angle

Low statistics for $\theta > 90^\circ$ because we had half of the BTU approved

Linear scale and zoomed!
Angular distribution steps:
for $\theta \leq 25^\circ$ at steps of $\theta \leq 1^\circ$
for $\theta > 25^\circ$ at steps of $\theta = 2^\circ$
Anyway better than foreseen

Test calculations (7Be no spin), now under definition

For 8B 1/10 of the expected intensity (300 pps)!!
Very preliminary results

Angular distribution steps:
for $\theta \leq 25^\circ$ at steps of $\theta \leq 1^\circ$
for $\theta > 25^\circ$ at steps of $\theta = 2^\circ$
Anyway better than foreseen

Test calculations (7Be no spin), now under definition

For 8B $1/10$ of the expected intensity (300 pps)!!

Very good overall agreement
data-calculation

\[\frac{\sigma}{\sigma_R} \]

\[\theta_{\text{c.m.}} \text{ (deg)} \]
$^{8}\text{B very preliminary results}$

Angular distribution steps:
for $\theta \leq 25^\circ$ at steps of $\theta \leq 1^\circ$
for $\theta > 25^\circ$ at steps of $\theta = 2^\circ$
Anyway better than foreseen

Test calculations ($^7\text{Be no spin}$),
now under definition

For ^{8}B 1/10 of the expected intensity (300 pps)!!

Very good overall agreement
data-calculation

No suppression of the elastic cross section opposite to ^{11}Be
→ as foreseen, the halo effect on the rainbow peak is SMALL
Is it a candidate p-halo?

\[
\frac{\sigma}{\sigma_{\text{Ruth}}} \quad \begin{align*}
{^{11}\text{Be}} + {^{64}\text{Zn}} @ E_{\text{c.m.}} &/ V_B \approx 1.45 \quad \sigma_R = 2.7 \text{ b} \\
{^{8}\text{B}} + {^{64}\text{Zn}} @ E_{\text{c.m.}} &/ V_B \approx 1.55 \quad \sigma_R = 1.5 \text{ b}
\end{align*}
Is it a candidate p-halo?
7Be events

Break up evaluation now under analysis
Conclusions

Positive

- Despite of the very low statistics we got a better resolution than expected

- Contrary to what observed in in-flight beam measurements there is NO EVIDENCE of a great diffusivity for 8B (Coul. Barrier) ($\sigma_{R^8B} \sim 0.5 \sigma_{R^{11}Be}$)
Conclusions

Positive

- Despite of the very low statistics we got a better resolution than expected

- Contrary to what observed in in-flight beam measurements there is NO EVIDENCE of a great diffusivity for 8B (Coul. Barrier) ($\sigma_{^8\text{B}} \sim 0.5 \sigma_{^1\text{Be}}$)

Negative

- We could not measure coincidences ($^7\text{Be} - p$) because of the very low beam intensity \Rightarrow we will not distinguish break up different components

...anyway we expect to end up with very interesting results ...