Transfer and breakup reactions involving \(^7\)Be at ISOLDE

Dhruba Gupta

Department of Physics, Bose Institute

Sk M Ali, D Gupta, K Kundalia, S K Saha Bose Institute, India
O Tengblad, J D Ovejas, A Perea CSIC, Madrid, Spain
J Cederkall, J Park Lund University, Sweden
I Martel Bravo Universidad de Huelva, Huelva, Spain
S Swezcz University of Jyväskylä, Finland

ISOLDE Workshop and Users meeting, December 5-6, 2019
The Cosmological 7Li problem

The primordial abundance of 7Li inferred from observational data \sim factor 3 below the abundance predicted by BBN theory using baryon-to-photon ratio η from measurements of cosmic microwave background.

BBN theory using η_b^{WMAP}: 7Li/H = 5.12 $^{+0.71}_{-0.62}$ \times 10^{-10}

Observationally extracted: 7Li/H = 1.58 $^{+0.35}_{-0.20}$ \times 10^{-10}

Serious discrepancy

Good agreement of BBN predicted abundances with observations for 2H, $^3, ^4$He.

For decades, one of the important unresolved problems
Nuclear physics aspect of the primordial lithium problem

Possible solutions - Nuclear/Astrophysical/Physics beyond standard BBN

Improved understanding of stellar depletion mechanism of 7Li? It is very difficult to justify enough destruction of 7Li Ryan (1999)

Destruction of mass-7 nuclides through interaction with WIMP particles, unstable particles in the early universe that could have affected BBN. Cyburt (2006), Goudelis (2016) Fields (2011)

In the condition of BBN, 7Li is effectively destroyed through 7Li(p,α)4He, to a level that the majority of the surviving 7Li is produced indirectly through the decay of 7Be ($T_{1/2} = 53.12$ d) after the cessation of nucleosynthesis.

Nuclear aspect of the 7Li problem are therefore the reaction rates of 7Be production, mainly 4He(3He,γ)7Be and its destruction through 7Be(n,p)7Li, 7Be(n,α)4He and 7Be(d,p)2α.
Incomplete nuclear physics input for BBN calculations: Can resonant enhancement alleviate this discrepancy?

R. W. Kavanagh
Nuclear Physics 18 (1960) 492

\[E_{\text{cm}} = 0.6 - 1.3 \text{ MeV}, \text{ reaction rate} \]

relied on an extrapolation to lower energies. Differential cross section multiplied by \(4\pi\) (assuming isotropic angular distribution) and \emph{arbitrarily} by \(3\) (to estimate contribution of higher energy \(^8\text{Be}\) states) \textit{Parker} (1972)

\[^7\text{Be}(d,p)^8\text{Be}^* \rightarrow 2\alpha \ (Q = 16.490 \text{ MeV}) \]

upto \(E_x = 11 \text{ MeV}\)
An experiment performed at lower energy found a significantly reduced cross-section in the BBN Gamow window compared to Parker’s estimate.

\[^7\text{Be(d,p)}^8\text{Be}^* \rightarrow 2\alpha \ (Q = 16.490 \text{ MeV}) \]

\((E_{7\text{Be}} = 5.55, 1.71 \text{ MeV}) \text{ upto } E_x = 13.8 \text{ MeV} \)

- Kavanagh (1960)
- Angulo (2005), \(^8\text{Be}^* \text{(g.s + 1}\text{st ex.s)}\)

Cross section overestimated previously

Small angular range covered (~ 7-17 deg) and full isotropy for proton angular distribution assumed in calculating average cross section.
Other works suggested resonant enhancement through a 16.7 MeV (5/2+) resonance state in 9B Cyburt (2005), Chakravorty (2011)

2H(7Be,d)7Be ($E_{^7\text{Be}} = 10$ MeV)

No evidence for a resonance observed

High resolution study of 9Be(3He,t)9B, $E = 140$ MeV/A, the state is strongly excited.

Without experimental knowledge on its decay properties, conclusion about resonant enhancement to the d + 7Be reaction remain uncertain.
Proposed ^7Be destruction mechanism, $d + ^7\text{Be} \rightarrow ^9\text{B}^* \rightarrow p + ^8\text{Be}^*$

The 16.8 MeV state in ^9B formed by fusion of $^7\text{Be} + d$ and decays by proton emission to a highly excited state in ^8Be, 16.626 MeV above the ground state, which subsequently breaks up into two α particles.

However, recent work (2019) shows, $d + ^7\text{Be} \rightarrow 2\alpha + p$ may proceed through intermediate state in ^8Be by $^7\text{Be}(d,p)^8\text{Be}(\alpha)^4\text{He}$ or ^5Li by $^7\text{Be}(d, \alpha)^5\text{Li}(p)^4\text{He}$ sequence, or in a “democratic” three-particle decay of the ^9B compound system.

$^7\text{Be} + d$ measured at $E_{\text{cm}} \approx 0.2 - 1.5$ MeV, measured cross sections dominated by the (d,α) channel towards which prior experiments mostly insensitive.
A new resonance at 0.36(5) MeV observed which reduces the predicted abundance of primordial 7Li but not sufficiently to solve it. Additional experiments with improved statistics needed to reduce the uncertainty in the resonance energy. R-matrix analysis: 16.849 (5) MeV, $5/2^+$ state in 9B?

BBN $d + ^7$Be rate (CF88) and Rijal (FSU19) rates are hardly different

Speculation: Is it the same as the 9B state at $E_{cm} = 0.31(1)$ MeV by Scholl (2011)?
Experiment IS 554 @

5 MeV/u 7Be on CH$_2$ (15 µm), CD$_2$ (15 µm) and 208Pb (1 mg/cm2) targets, beam intensity $I \sim 5 \times 10^5$ pps

Charge particle detector setup
1 x S3 annular DSSD (24 x 32 strips, 1000 µm) covering front angles 8° – 25°
5 x W1 DSSD (16 x 16 strips, 60 µm) in pentagon geometry covering angles 40° – 80°
2 x BB7 DSSD (32 x 32 strips, 60 µm and 140 µm) at backward angles 110° – 140°
The W1 and BB7 DSSDs are backed by 1500 µm thick unsegmented pads
^7Be on CD$_2$

ΔE vs E_{tot} curve from ^7Be on CD$_2$ target in DSSD1. Angular correction applied on ΔE. Gates for energy matching applied.

$^7\text{Be} + \text{d}$ elastic scattering
\textbf{Preliminary}

\textbf{\(^7 \text{Be} + d \) elastic scattering}

\textbf{\(^7 \text{Be} + ^{12} \text{C} \) elastic scattering}

Data only from S3 detector

Data only from the pentagon detectors

\textbf{IS 554}
$^7\text{Be}(d, p)^8\text{Be}^*$

CD$_2$ target proton impurity ($\sim 2\%$). Elastic protons from the proton impurity overlaps with transfer protons.

Elastic protons subtracted using ^7Be runs on CH$_2$ target

Excitation energy spectrum of $^8\text{Be}^*$ from CD$_2$ runs with proton impurity

Excitation from CD$_2$

Excitation energy spectrum of $^8\text{Be}^*$ from CD$_2$ runs (in blue, after removing elastic protons) and CH$_2$ runs (in red)

Preliminary
Excitation energy of 8Be* (after removing elastic protons)

Preliminary
Energy vs theta of the protons of 7Be(d,p)8Be*

Excitation energy of 8Be*

Simulations

Analysis of back angle data going on
Detection of 16.84 MeV $(5/2^+)$ resonance state from $^7\text{Be} + d \rightarrow ^9\text{B}$ using supersymmetric quantum mechanics

Unstable or unbound systems, with very shallow potentials, pose serious numerical challenges in detecting resonance states. We could successfully circumvent this problem by using supersymmetric quantum mechanics.

This transforms the shallow well to a deep well-barrier isospectral potential, generating resonance state wavefunction. The resonance state energies obtained were found to be in excellent agreement with the experimental values.

Energy and angular correlations of coincident alphas detected by the pentagon DSSDs. Simulations show the energy correlation of the alphas emitted from the 16.63 MeV state of 8Be.
Outlook

Primordial 7Li abundance essentially determined by the 7Be production and destruction channel

The production channel 3He(α,γ)7Be leads to an overall uncertainty \sim 7%. Broggini (2012)

The destruction channel 7Be(d,p)$^2\alpha$ via the 16.8 MeV state in 9B is unable to enhance the reaction rate by the amount needed to resolve the cosmological lithium problem. Speculation on the new resonance at 0.36 MeV corresponding to the 16.8 MeV state of 9B. The decay properties of the state remains to be known.

7Be destruction involving neutrons 7Be(n,p)7Li, 7Be(n, α)4He does not solve the anomaly. Damone (2018), Barbagallo (2016)

It is not yet time for a firm conclusion about the anomaly from our data. However, the indications are that it may not be possible to find a solution from nuclear physics alone.

It would be interesting in future to see if the lithium problem truly points to new fundamental physics.
IS 554 collaboration

Sk Mustak Ali, Dhruba Gupta, Kabita Kundalia, Swapan K Saha
Dept. of Physics, Bose Institute, Kolkata, India

Olof Tengblad, Javier Diaz Ovejas, Angel Perea
Instituto de Estructura de la Materia, Madrid, Spain

Joakim Cederkall, Joochun Park
Lund University, Sweden

Ismael Martel Bravo
Universidad de Huelva, Huelva, Spain

Stuart Swezec
University of Jyväskylä, Finland
Acknowledgements

ISOLDE engineers in charge, RILIS team, Target Group

Grant agreement no. 654002 (ENSAR2)

Grant ISRO/RES/2/378/15-16 (ISRO, Govt. of India)

Thank You